铺砖问题 (状态压缩DP)

题目要求用1×2的砖块覆盖n×m网格中所有白色格子,但不能覆盖黑色格子,输出合法覆盖方法的数量。分析表明,黑色格子总是不被覆盖,对于白色格子,由于砖块大小,每列顶部一个格子的状态决定后续放置。可以使用状态压缩动态规划解决此问题,进行记忆化搜索,减少重复计算。程序实现采用状态压缩DP的方法,关注于每一列顶部未处理的白色格子。
摘要由CSDN通过智能技术生成

题意:

给定n*m的格子,每个格子被染成了黑色或者白色。现在要用1 * 2 的砖块覆盖这些格子,要求块与块之间互相不重叠,且覆盖了所有白色的格子,但不覆盖任意一个黑色格子。求一个有多少种覆盖方法,输出方案数对M取余后的结果。

输入:

n= 3

m= 4

每个格子的颜色如下所示(.表示白色,x表示黑色)

.x.

输出:

2


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值