RAG 是什么?一文带你看懂 AI 的“外挂知识库”

RAG 是什么

RAG(Retrieval Augmented Generation,检索增强生成)是一种结合信息检索文本生成的技术方案

RAG 技术就像给 AI 装上了「实时百科大脑」,通过先查资料后回答的机制,让 AI 摆脱传统模型的”知识遗忘”困境

主要核心流程分为:

  1. 检索(Retrieval):基于用户的输入,从外部知识库(数据库、文档、网页)中检索与查询相关的文本片段,通常使用向量化表示和向量数据库进行语义匹配。
  2. 生成(Generation): 将用户查询与检索到的内容作为上下文输入给 LLM(如 GPT、DeepSeek 等),由模型输出最终回答。

RAG 解决了什么问题

  1. 知识更新滞后

LLM 是离线训练的,一旦训练完成后,它们无法获取新的信息,因此,它们无法回答训练数据时间点之后发生的事件,比如“今天的最新新闻”

  1. 幻觉现象

大语言模型(LLM) 的回答是根据已有的 训练数据 和概率预测得出来的,当面对没有在训练中见过的问题时,模型可能会“编造”看似合理但实际上不准确或虚构的内容

RAG 是如何解决这些问题的?

RAG 将信息检索与语言生成相结合,在回答问题时,首先从外部知识库(如网页、数据库、文档等)中检索相关信息,再基于这些信息生成回答。这样一来:

  • 即使模型本身不包含最新知识,也能通过检索获取最新内容
  • 回答更加有依据,减少“编答案”的幻觉现象

RAG 流程

文档索引

在 RAG 中,文档索引 是整个流程的基础环节之一,将文档(word,excel,PDF,Markdown 等)根据一定的规则容划分为文本块(chunk),然后通过 Embedding 模型将文本块转换为向量并存入向量数据库中

文档索引的目的是为了实现高效、准确的信息检索,为后续的大语言模型生成提供可靠的上下文支持。

步骤

  1. 向量化用户问题:将 用户问题 用相同的 Embedding 模型转换为向量,用以检索相关知识分片
  2. 检索(Retrieval):通过向量数据库一系列高效的数学计算 (如余弦相似度、欧氏距离等),检索出语义相似度最高的几个知识分片(Top_k)
  3. 构建 Prompt :将 Prompt + 检索结果+ 用户问题 构建成完整的 Prompt
  4. 生成(Generation):大语言模型再根据这个 Prompt 生成结果

Embedding 模型是什么?

Embedding 是一种将文字序列(如词、句子或文档)转换为向量表示(固定维度的向量)的技术

模型目标:使得具有相似语义的文字序列对应的向量尽可能接近(即相似度高),而语义不同的文字序列对应的向量尽可能远离(即相似度低)

作用:通过数学计算向量之间的距离,快速检索出相似度最高的文字序列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值