笔记
文章平均质量分 76
a251844314
这个作者很懒,什么都没留下…
展开
-
深度学习笔记:正则化 1
1、训练集/验证集/测试集训练集:用于训练模型。验证集(简单交叉验证集 cross validation set/development set/dev set):用于评估多种算法模型的性能,尽可能优化算法测试集(test set):评估模型准确率验证集和测试集和可以合在一起,当我们不做无偏差估计的时候。2、偏差、方差偏差(bias):训练集准确率。模型在训练集表现越好,预原创 2017-12-16 13:23:54 · 380 阅读 · 0 评论 -
深度学习笔记:优化算法
1、mini batch梯度下降传统的batch梯度下降是把所有样本向量化成一个矩阵,每一次iteration遍历所有样本,进行一次参数更新,这样做每一次迭代的计算量大,要计算所有样本,速度慢,但是收敛可以比较直接地收敛到cost function的最小值。 随机梯度下降(stochastic gradient descent)是每次迭代以一个样本为输入,这种方法每次迭代更新参数时,参数不一定是朝原创 2018-01-01 13:15:47 · 271 阅读 · 0 评论 -
深度学习笔记:优化算法
1、mini batch梯度下降传统的batch梯度下降是把所有样本向量化成一个矩阵,每一次iteration遍历所有样本,进行一次参数更新,这样做每一次迭代的计算量大,要计算所有样本,速度慢,但是收敛可以比较直接地收敛到cost function的最小值。随机梯度下降(stochastic gradient descent)是每次迭代以一个样本为输入,这种方法每次迭代更新参数时,参数不一原创 2017-12-27 11:38:24 · 268 阅读 · 0 评论