其实思路很简单,就是几个函数实现几个功能。
此题核心算法是卡特兰数,百度上的推理是:
对于每一个数来说,必须进栈一次、出栈一次。我们把
进栈设为状态‘1’,出栈设为状态‘0’。n个数的所有状态对应n个1和n个0组成的2n位
二进制数。由于等待入栈的操作数按照1‥n的顺序排列、入栈的操作数b大于等于
出栈的操作数a(a≤b),因此输出序列的总数目=由左而右扫描由n个1和n个0组成的2n位二进制数,1的累计数不小于0的累计数的方案种数。
在2n位二进制数中填入n个1的方案数为c(2n,n),不填1的其余n位自动填0。从中减去不符合要求(由左而右扫描,0的累计数大于1的累计数)的方案数即为所求。
不符合要求的数的特征是由左而右扫描时,必然在某一奇数位2m+1位上首先出现m+1个0的累计数和m个1的累计数,此后的2(n-m)-1位上有n-m个 1和n-m-1个0。如若把后面这2(n-m)-1位上的0和1互换,使之成为n-m个0和n-m-1个1,结果得1个由n+1个0和n-1个1组成的2n位数,即一个不合要求的数对应于一个由n+1个0和n-1个1组成的排列。
反过来,任何一个由n+1个0和n-1个1组成的2n位
二进制数,由于0的个数多2个,2n为
偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。
因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。
显然,不符合要求的方案数为c(2n,n+1)。由此得出输出序列的总数目=c(2n,n)-c(2n,n+1)=c(2n,n)/(n+1)=h(n)。
简单来说,就是判断后实现(m+n)*(m-n+1)/(m+1);
#include <iostream>
#include <string>
using namespace std;
#define MAX 100
#define BASE 10000
void multiply(int a[],int Max,int b) //大数乘小数
{
int i,array=0;
for (i=Max-1; i>=0; i--)
{
array+=b*a[i];
a[i] = array%BASE;
array /= BASE;
}
}
void divide(int a[], int Max, int b) //大数除小数
{
int i,div=0;
for (i=0;i<Max; i++)
{
div = div*BASE + a[i];
a[i] = div / b;
div %= b;
}
}
int fact[205][MAX];
void setFact () //求出0-200的阶乘值
{
fact[0][MAX-1] = fact[1][MAX-1] = 1;
for ( int i = 2; i <= 200; ++ i )
{
memcpy ( fact[i] , fact[i-1] , MAX * sizeof ( int ) );
multiply ( fact[i] , MAX , i );
}
}
void outPut ( int ctl[MAX] )
{
int i = 0;
while ( i < MAX && ctl[i] == 0 )//去掉前面的为0的项
{
i ++ ;
}
printf ( "%d", ctl[i++] );
while ( i < MAX )
{
printf ( "%04d", ctl[i++] );
}
putchar ( '\n' );
}
int res[MAX];
int main ()
{
int M,N;
int ca = 1;
setFact(); //打表
while ( cin >> M >> N , M + N )
{
printf ( "Test #%d:\n",ca++ );
if ( N > M )
{
puts ( "0" );
continue;
}
memcpy ( res , fact[M+N] , MAX * sizeof ( int ) ); //阶乘 ( m + n )!
multiply ( res, MAX, M - N + 1 ); // ( m + n )! * ( m-n+1 )
divide ( res, MAX, M + 1 ); // ( m + n )! * ( m-n+1 ) / ( m+ 1 )
outPut ( res );
}
return 0;
}
不过很奇怪的是进位(BASE)必须要在5和9之间才能AC,试了很多遍,太郁闷了!