python库numpy知识记录

    numpy

    1. zeros

     用来创建元素全为0的数组,数组的维度根据参数来。

     Examples:

>>> np.zeros(5)
array([ 0.,  0.,  0.,  0.,  0.])
>>> np.zeros((5,), dtype=np.int)
array([0, 0, 0, 0, 0])
>>> np.zeros((2, 1))
# 这里表示创建一个2维数组(也就是矩阵),其中包含2行1列
array([[ 0.],
       [ 0.]])
>>> s = (2,2)
>>> np.zeros(s)
array([[ 0.,  0.],
       [ 0.,  0.]])
>>> np.zeros((2,3,4))
# 这里表示创建一个3维数组(也就是张量),其中包含2个3 * 4的矩阵
array([[[ 0.  0.  0.  0.]
  [ 0.  0.  0.  0.]
  [ 0.  0.  0.  0.]],
 [[ 0.  0.  0.  0.]
  [ 0.  0.  0.  0.]
  [ 0.  0.  0.  0.]]])
>>> np.zeros((2,), dtype=[('x', 'i4'), ('y', 'i4')]) # custom dtype
array([(0, 0), (0, 0)],
      dtype=[('x', '<i4'), ('y', '<i4')])

    可以看出来zeros函数第一个参数:

    如果是纯数字,表示一维数组,个数等于这个数字,其实等价np.zeros((n))。

    如果是一个包含n个元素的元组,表示创建的n维数组,n1,n2,...,n,即第一维包含n1,第二维包含n2...个元素.

 

    2. array.shape

    返回的是一个元组的规模,返回值用元组来表示,里面有几个数字就表示是几维的数组。

   Examples:

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值