28岁的物理工程师,想转行做AI到底值不值?机器学习工程师在企业中的现状又是什么样子的?
一则求助帖,在今日的Reddit论坛上迅速发酵:
我是一名物理工程师,对目前的工作不那么感兴趣,甚至有点想回学校稍微逃避下现实和责任。
在没毕业前,有人建议我去搞机器学习,也激励我去做计算机视觉方面的实习,去做更多的项目等。目前我已经有一份工作了,我想“重新考虑”这条路。
目前的工作能看到数据处理的重要性和繁琐性。
基于上述原因,我原来越倾向参加一个AI方面的一年制专业硕士课程。但是,我想知道数据/机器学习工程师在中大型企业中的工作到底是怎么样的?
我不打算成为一名程序员了,因为我不那么年轻已经28岁了,并且知识背景中大多数与物理相关。我想这样的话,自己没有搞计算机的那群人有竞争力。
所以,我应该弃工作选择读书吗?
我知道求助陌生人似乎不太明智,但我希望从别人的故事中找到对自己的帮助。
一时间,这则贴子下众说纷纭,网友从不同的角度,拼凑起当下机器学习工程师的真实工作全貌。
ML工程师的岗位略显尴尬
网友mimighost表示,首先应该摆正对机器学习工程师的认识,可以说这个岗位本身有些矛盾。
他认为,将机器学习工程师首先应该是一个合格的程序员,你的编程技能应该超过你所掌握的所有科学知识。
所以,此前即使是非科班出身的物理工程师,也应该先把提升点放到编程本身上。
mimighost认为,在程序员行列中留给机器学习工程师的岗位非常有限,岗位本身就是矛盾的。但可以考虑向机器学习研究员或者研究科学家方向发展。
要是想这样发展,只读个一年硕士怕是远远不够,怎么着,也得是个博士了吧。
年龄不是门槛
一位网友和楼主有着相似的困惑,表示年龄28,在于年轻人竞争同一岗位时,会不会没有优势反倒是劣势啊。
这个问题倒是不难理解,“35岁的程序员该何去何从”也是国内程序员们担心的问题之一呀。
网友fakemoose认为,在这个年龄段无论如何也不应该申请非常入门的岗位了,应该利用已经积累起来的经工作技能。
也有网友不服,表示在数据科学领域,即使是入门级别,其收入也已超过美国90%人口了。
还有更多不同的声音:
如果年龄超过了40岁,则可能是一个限制因素。
——analyst___apu
我是从30岁开始从物理过渡到机器学习的,所以这个年纪转行是可能的,我是自学。
——amnezzia
大多数认为,28岁依然年轻。大部分人读完博士也老大不小,大有资本去探索新领域。年龄不是门槛,行业经验才是。
学好数据科学
不少过来人的建议是,数据科学技能是转行之后的最大挑战。
而物理学转到AI?其实很加分。
网友i_love_FFT表示,自己是一个乐观主义者。如果能在现在地区找到一个高科技公司,则物理学的背景是个加分项,是个必须的技能。
如今,几乎每家科技公司都在建立机器学习团队。尽管对于那些做过大量在线编程课程和有某网站的AI证书的人来说很容易,但最大的挑战始终是找到能够理解数据本身的人!
如果具备物理工程背景,那么能够很好地理解基于物理的数据,包括传感器数据,物理系统模型等。这种技能与对机器学习的兴趣相结合,就是求职过程中的闪光点。
除了数据科学,请一定学好Python啊。网友Heartomics表示,自己最大的阻碍就是接受一种Pythonic的做事方式。
机器学习程序员的一天
那么,程序员的一天是怎么过来的?
一位机器学习工程师总结了自己在一家全球员工数过10万的系统集成商工作的时刻表。
他表示,理论上来说,他们的工作是设计模型、调整模型、设置NLP pipeline,重构数据科学家编写的代码,并做一些云端的任务,对吧?
但事实上,他需要做的是任何客户想要的东西。自己的身份也是多变的:
可以是Python开发人员、数据工程师、数据科学家和数据分析师。虽然在自己看这些都差不多,但在客户看来,区分这些岗位会显得这个任务多样化。
大概就是:我是一块砖,哪里需要哪里搬。
目前正在同时处理三个项目:一个与销售相关,一个是需要重构代码的成熟项目,还有从PoC迁移到NLP项目。
一天的时刻表大概是这样的:
09:00 电话会议
09:30 开展NLP项目(Python)
11:00 电话(1小时)讨论销售项目
12:00 午餐
12:30 电话演示时间
13:00 项目工作(Python)
15:00 讨论项目
16:00 查看同事模型的文档设置和超参数。
17:00 回家。
诶?朝九晚五的程序员?
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓