【HDOJ】P1215 七夕节

本文介绍了一种通过枚举因子来求特定数值下因子之和的算法,并给出了C++实现代码。该方法通过预先计算并存储每个数的因子之和,从而在查询时能够快速给出结果。

题目意思很简单,不解释

有两种方法,

1是暴力法,不就是

2就是下面要讲的方法

假如果说一个数n可以被b整除,那么一定可以被b的因子整除

那么我需要做的就是枚举这些因子

多余的请看代码

 

#include <iostream>
#include <cstdio>
using namespace std;

int n,T,f[500001];

int main(){
    f[1]=1;
    for (int i=1;i<=250000;i++)
        for (int j=i+i;j<=500000;j+=i)
            f[j]+=i;
    cin>>T;
    while(T--){
        scanf("%d",&n);
        printf("%d\n",f[n]);
    }
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/XGHeaven/p/4004813.html

内容概要:本文围绕基于FFT算法的MATLAB傅里叶级数3D可视化展开研究,结合Matlab代码实现信号处理中的频域分析与三维图形展示,旨在通过快速傅里叶变换(FFT)将时域信号转换为频域特征,并利用三维可视化技术直观呈现周期信号的频谱结构。文中可能涵盖傅里叶级数的数学原理、FFT算法的实现流程、Matlab编程细节以及3D绘图的技术方法,帮助读者深入理解信号频域特性及其可视化表达。此外,文档还列举了大量相关的科研仿真项目,如故障诊断、路径规划、优化算法等,体现出该研究在工程与科研领域的广泛应用背景。; 适合人群:具备一定Matlab编程基础和信号处理知识的高校学生基于FFT算法的MTALAB傅里叶级数3D可视化研究(Matlab代码实现)、科研人员及工程技术人员,尤其适用于从事信号分析、故障诊断或可视化研究的相关从业者; 使用场景及目标:①掌握FFT在Matlab中的实现方式及其在信号频谱分析中的应用;②学习如何将傅里叶级数结果进行3D可视化以增强数据分析的直观性;③为后续开展机械故障诊断、电力系统分析、通信信号处理等领域的研究提供技术参考与代码基础; 阅读建议:建议读者结合文中提供的Matlab代码进行实际操作,逐步调试并理解每一步的信号变换与图形绘制逻辑,同时可参考附带的网盘资源获取完整代码示例和其他相关仿真模型,提升实践能力与科研效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值