题意:有 n n n 个政党,每个政党有2个代表,现在要举办一个和平委员会,每个政党都要派出一个代表参加,但是有 m m m 对代表不能同时出席会议,问是否有一种出席方案能够让每个政党都能派出一个代表,且代表之间没有冲突,如果有输出字典序最小的方案,没有则输出 N I E NIE NIE
思路:2-SAT的模板题,对于一对不能同时出席的代表 ( a , b ) (a,b) (a,b) ,则我们可以推出若选择了 a a a 则必定要选择 b ′ b' b′ ,若选择 b b b 则必定要选择 a ′ a' a′ ,( a a a 与 a ′ a' a′ 属于一个政党, b b b 与 b ′ b' b′ 属于一个政党)。所以我们可以从 a a a 往 b ′ b' b′ 连有向边, b b b 往 a ′ a' a′ 连有向边。可以看出,无解的充要条件为存在一个政党 ( a , a ′ ) (a,a') (a,a′) 只要选了 a a a 就必定要选 a ′ a' a′ 且选了 a ′ a' a′ 就必定要选 a a a 。所以只需要对于每个政党,选择代表 a a a 的情况下判断当前解是否成立(即选了 a a a 的情况下是否一定要选 a ′ a' a′ )。最后即可求得解。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<map>
#include<vector>
#include<queue>
#include<deque>
using namespace std;
#define ll long long
#define PI acos(-1)
#define INF 0x3f3f3f3f
#define NUM 16010
#define debug true
#define lowbit(x) ((-x)&x)
#define ffor(i,d,u) for(int i=(d);i<=(u);++i)
#define _ffor(i,u,d) for(int i=(u);i>=(d);--i)
#define mst(array,Num,Kind,Count) memset(array,Num,sizeof(Kind)*(Count))
const int P = 1e9+7;
template <typename T>
void read(T& x)
{
x=0;
char c;T t=1;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c=='-'){t=-1;c=getchar();}
do(x*=10)+=(c-'0');while((c=getchar())>='0'&&c<='9');
x*=t;
}
template <typename T>
void write(T x)
{
int len=0;char c[21];
if(x<0)putchar('-'),x*=(-1);
do{++len;c[len]=(x%10)+'0';}while(x/=10);
_ffor(i,len,1)putchar(c[i]);
}
namespace Solve
{
int n, m, x, y;
int head[NUM], edge_num;
bool vis[NUM];//vis[i]表示代表i的状态,true为选,false为不选
int sta[NUM], top;
struct test
{
int to, next;
} e[40005];
bool dfs(int vertex)//寻找选了vertex之后一定要选哪些代表
{
if (vis[vertex ^ 1])
return false;
if (vis[vertex])
return true;
vis[vertex] = true;
sta[++top] = vertex;
for (int i = head[vertex]; i != -1; i = e[i].next)
{
if (!dfs(e[i].to))
return false;
}
return true;
}
inline bool Two_Sat(int num)
{
for (int i = 0; i < num; i += 2)
{
if (vis[i] || vis[i ^ 1])
continue;
top = 0;
if (!dfs(i))//选择i的方案中某个政党的两个代表都出现了
{
while (top > 0)//重置
{
vis[sta[top]] = false;
--top;
}
if (!dfs(i ^ 1))//选择i'
return false;
}
}
return true;
}
inline void AC()
{
while(scanf("%d",&n)!=EOF)
{
scanf("%d", &m);
edge_num = -1;
mst(vis, false, bool, n << 1), mst(head, -1, int, n << 1);
ffor(i, 1, m)
{
read(x), read(y);
--x, --y;
e[++edge_num].to = y ^ 1, e[edge_num].next = head[x], head[x] = edge_num;
e[++edge_num].to = x ^ 1, e[edge_num].next = head[y], head[y] = edge_num;
}
if (Two_Sat(n << 1))
{
for (int i = 0; i < (n << 1); ++i)
{
if (vis[i])
{
write(i + 1);
putchar('\n');
}
}
}
else
{
puts("NIE");
}
}
}
}
int main()
{
Solve::AC();
return 0;
}