HDU -1814 Peaceful Commission 2-SAT

题目链接

题意:有 n n n 个政党,每个政党有2个代表,现在要举办一个和平委员会,每个政党都要派出一个代表参加,但是有 m m m 对代表不能同时出席会议,问是否有一种出席方案能够让每个政党都能派出一个代表,且代表之间没有冲突,如果有输出字典序最小的方案,没有则输出 N I E NIE NIE

思路:2-SAT的模板题,对于一对不能同时出席的代表 ( a , b ) (a,b) (a,b) ,则我们可以推出若选择了 a a a 则必定要选择 b ′ b' b ,若选择 b b b 则必定要选择 a ′ a' a ,( a a a a ′ a' a 属于一个政党, b b b b ′ b' b 属于一个政党)。所以我们可以从 a a a b ′ b' b 连有向边, b b b a ′ a' a 连有向边。可以看出,无解的充要条件为存在一个政党 ( a , a ′ ) (a,a') (a,a) 只要选了 a a a 就必定要选 a ′ a' a 且选了 a ′ a' a 就必定要选 a a a 。所以只需要对于每个政党,选择代表 a a a 的情况下判断当前解是否成立(即选了 a a a 的情况下是否一定要选 a ′ a' a )。最后即可求得解。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<map>
#include<vector>
#include<queue>
#include<deque>
using namespace std;
#define ll long long
#define PI acos(-1)
#define INF 0x3f3f3f3f
#define NUM 16010
#define debug true
#define lowbit(x) ((-x)&x)
#define ffor(i,d,u) for(int i=(d);i<=(u);++i)
#define _ffor(i,u,d) for(int i=(u);i>=(d);--i)
#define mst(array,Num,Kind,Count) memset(array,Num,sizeof(Kind)*(Count))
const int P = 1e9+7;
template <typename T>
void read(T& x)
{
    x=0;
    char c;T t=1;
    while(((c=getchar())<'0'||c>'9')&&c!='-');
    if(c=='-'){t=-1;c=getchar();}
    do(x*=10)+=(c-'0');while((c=getchar())>='0'&&c<='9');
    x*=t;
}
template <typename T>
void write(T x)
{
    int len=0;char c[21];
    if(x<0)putchar('-'),x*=(-1);
    do{++len;c[len]=(x%10)+'0';}while(x/=10);
    _ffor(i,len,1)putchar(c[i]);
}
namespace Solve
{
int n, m, x, y;
int head[NUM], edge_num;
bool vis[NUM];//vis[i]表示代表i的状态,true为选,false为不选
int sta[NUM], top;
struct test
{
    int to, next;
} e[40005];
bool dfs(int vertex)//寻找选了vertex之后一定要选哪些代表
{
    if (vis[vertex ^ 1])
        return false;
    if (vis[vertex])
        return true;
    vis[vertex] = true;
    sta[++top] = vertex;
    for (int i = head[vertex]; i != -1; i = e[i].next)
    {
        if (!dfs(e[i].to))
            return false;
    }
    return true;
}
inline bool Two_Sat(int num)
{
    for (int i = 0; i < num; i += 2)
    {
        if (vis[i] || vis[i ^ 1])
            continue;
        top = 0;
        if (!dfs(i))//选择i的方案中某个政党的两个代表都出现了
        {
            while (top > 0)//重置
            {
                vis[sta[top]] = false;
                --top;
            }
            if (!dfs(i ^ 1))//选择i'
                return false;
        }
    }
    return true;
}
inline void AC()
{
    while(scanf("%d",&n)!=EOF)
    {
        scanf("%d", &m);
        edge_num = -1;
        mst(vis, false, bool, n << 1), mst(head, -1, int, n << 1);
        ffor(i, 1, m)
        {
            read(x), read(y);
            --x, --y;
            e[++edge_num].to = y ^ 1, e[edge_num].next = head[x], head[x] = edge_num;
            e[++edge_num].to = x ^ 1, e[edge_num].next = head[y], head[y] = edge_num;
        }
        if (Two_Sat(n << 1))
        {
            for (int i = 0; i < (n << 1); ++i)
            {
                if (vis[i])
                {
                    write(i + 1);
                    putchar('\n');
                }
            }
        }
        else
        {
            puts("NIE");
        }
    }
}
}
int main()
{
    Solve::AC();
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值