题意:一个 n n n 行 m m m 列的棋盘,上面放置若干个炮(也可以不放),要求炮之间无法相互攻击(即一行或者一列最多只能存在两个炮),求所有的放置方法
思路:动态规划,定义 d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 表示前 i i i 行有 j j j 列有一个炮,有 k k k 列有两个炮,由此可以通过第 i − 1 i-1 i−1 行的dp数组以及排列组合得出状态转移方程
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<map>
#include<vector>
#include<queue>
#include<deque>
using namespace std;
#define ll long long
#define PI acos(-1)
#define INF 0x3f3f3f3f
#define NUM 105
#define debug true
#define lowbit(x) ((-x)&x)
#define ffor(i,d,u) for(int i=(d);i<=(u);++i)
#define _ffor(i,u,d) for(int i=(u);i>=(d);--i)
#define mst(array,Num,Kind,Count) memset(array,Num,sizeof(Kind)*(Count))
const ll mod = 9999973;
template <typename T>
void read(T& x)
{
x=0;
char c;T t=1;
while(((c=getchar())<'0'||c>'9')&&c!='-');
if(c=='-'){t=-1;c=getchar();}
do(x*=10)+=(c-'0');while((c=getchar())>='0'&&c<='9');
x*=t;
}
template <typename T>
void write(T x)
{
int len=0;char c[21];
if(x<0)putchar('-'),x*=(-1);
do{++len;c[len]=(x%10)+'0';}while(x/=10);
_ffor(i,len,1)putchar(c[i]);
}
namespace Solve
{
ll dp[NUM][NUM][NUM] = {};
int n, m;
inline void AC()
{
read(n), read(m);
dp[0][0][0] = 1;
ffor(i, 1, n)
ffor(j, 0, m)
ffor(k, 0, m - j)
{
(dp[i][j][k] += dp[i - 1][j][k]) %= mod;//第i行不放炮
if (j > 0)//第i行放一个炮且所放的列上之前没有炮
(dp[i][j][k] += ((m - j - k + 1) * dp[i - 1][j - 1][k])) %= mod;
if (k > 0)//第i行放一个炮且所放的列上之前有一个炮
(dp[i][j][k] += ((j + 1) * dp[i - 1][j + 1][k - 1])) %= mod;
if (j > 1)//第i行放两个炮且所放的两列上之前均没有炮
(dp[i][j][k] += (((m - j + 2 - k) * (m - j + 1 - k) >> 1) * dp[i - 1][j - 2][k])) %= mod;
if (k > 1)//第i行放两个炮且所放的两列上之前均有一个炮
(dp[i][j][k] += (((j + 2) * (j + 1) >> 1) * dp[i - 1][j + 2][k - 2])) %= mod;
if (j > 0 && k > 0)//第i行放两个炮且所放的列上一个没有炮,一个有一个炮
(dp[i][j][k] += ((m - j - k + 1) * j * dp[i - 1][j][k - 1])) %= mod;
}
ll ans = 0;
ffor(i, 0, m)
ffor(j, 0, m - i)
(ans += dp[n][i][j]) %= mod;
write(ans);
}
}
int main()
{
Solve::AC();
return 0;
}