Consider the following exercise, found in a generic linear algebra textbook.
Let A be an n × n matrix. Prove that the following statements are equivalent:
- A is invertible.
- Ax = b has exactly one solution for every n × 1 matrix b.
- Ax = b is consistent for every n × 1 matrix b.
- Ax = 0 has only the trivial solution x = 0.
The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.
Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!
I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
Input
On the first line one positive number: the number of testcases, at most 100. After that per testcase:- One line containing two integers n (1 ≤ n ≤ 20000) and m(0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
- m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
Output
Per testcase:- One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
Sample Input
2 4 0 3 2 1 2 1 3
Sample Output
4 2
题意:在数学里面有两种关系,一种是充分条件,即对于集合p,q,p => q,另一种是等价关系,p => q && q =>p, 这两种关系都具有传递性,p => q 可以对应到有节点p到节点q有一条边。 问:给定一些集合的充分性关系,确定出若让所有集合都等价,还需在添加最少的充分性条件。
思路:首先找出强连通分量,然后把强连通分量缩成一个点。得到一个DAG。接下来,设有a个节点的入度为0,b个节点的出度为0,则max{a,b}就是答案。注意原图已经强连通要特判一下。
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> using namespace std; #define maxn 50080 #define maxm 200080 int first[maxn],S[maxn]; int vv[maxm],nxt[maxm]; int low[maxn],dfn[maxn],vis[maxn],c[maxn]; int rudu[maxn],chudu[maxn]; int e,cnt,t,p; void addedge(int u,int v) { vv[e] = v; nxt[e] = first[u]; first[u] = e++; //vv[e] = u; nxt[e] = first[v]; first[v] = e++; } void init() { e = cnt = t = p = 0; memset(vis,0,sizeof(vis)); memset(first,-1,sizeof(first)); memset(dfn,0,sizeof(dfn)); memset(rudu,0,sizeof(rudu)); memset(chudu,0,sizeof(chudu)); } void Tarjan(int u) { vis[u] = 1;S[++p] = u; dfn[u] = low[u] = ++cnt; for(int i = first[u];i != -1;i = nxt[i]) { int v = vv[i]; if(!dfn[v]) { Tarjan(v); low[u] = min(low[u],low[v]); } else if(vis[v]) low[u] = min(low[u],dfn[v]); } if(low[u] == dfn[u]) { ++t; while(S[p] != u) { vis[S[p]] = 0; c[S[p]] = t; p--; } c[S[p]] = t; p--; vis[u] = 0; } } int main() { //freopen("in.txt","r",stdin); int T; scanf("%d",&T); while(T--) { int n,m; scanf("%d%d",&n,&m); init(); for(int i = 1;i <= m;i++) { int u,v; scanf("%d%d",&u,&v); addedge(u,v); } for(int i = 1;i <= n;i++) if(!dfn[i]) { Tarjan(i); } if(t == 1) puts("0"); else { for(int i = 1;i <= n;i++) { for(int j = first[i];j != -1;j = nxt[j]) { int v = vv[j]; if(c[i] == c[v]) continue;///同一个强连通分量 else { chudu[c[i]]++; rudu[c[v]]++; } } } int ans0 = 0,ans1 = 0; for(int i = 1;i <= t;i++) { if(chudu[i] == 0) ans0++; if(rudu[i] == 0) ans1++; } printf("%d\n",max(ans0,ans1)); } } return 0; }