棋子染色问题(burnside引理或者polya定理)

本文探讨了一道笔试题目,涉及用两种颜色染排成圈的8个棋子,忽略旋转等价的情况。该问题属于组合数学范畴,可以应用Burnside引理或Polya定理来解决。通过计算不同旋转下的棋子染色情况,并考虑旋转的循环节,最终得出共有36种不同的染色方式。
摘要由CSDN通过智能技术生成

最近笔试的时候遇到一个问题,题目是:用两种颜色去染排成一个圈的8个棋子,如果可以通过旋转得到则只算一种,问一共有多少种染色方式 ?

当时因为时间的关系,没有做出来,后来仔细考虑了一下,这是组合数学的题目。
重新回顾了下,组合数学老师上课的PPT,果然有这类题目。
让我们一起先理解下面两个题目吧。
这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

而NYOJ也有一道很类似的题目。
NYOJ 280:一盒有红、蓝、绿三种颜色的珠子,每种颜色珠子的个数都大于24,现在LK想用这一盒珠子穿出一条项链,项链上的珠子个数为n(0<=n<=24),请你帮她计算一下一共可以用这一盒珠子可以穿出多少条不同的项链。通过旋转、翻转达到同一种状态的被认为是相同的项链。

解答思路可以参考:http://blog.csdn.net/u013050857/article/details/43833353

而我们这个题目相比之下࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值