使用YOLO5进行模型训练机器学习【教程篇】

准备工作
YOLOv5 是目前非常流行的目标检测模型,广泛应用于各种计算机视觉任务,可以检测到图片中的具体目标。
我们借助开源的模型训练框架,省去了自己写算法的步骤,有技术的伙伴可以深入了解并自己写算法训练。
电脑要求: GPU ,内存 >12G
python > =3.8
windows or linux
检查自己的电脑网络情况,ping 一下git是否通

过程

在开始之前,请确保你已经安装了以下软件和库:

Python 3.8 及以上
PyTorch
Git
pip
步骤 1:克隆 YOLOv5 仓库
首先,克隆 YOLOv5 的官方仓库:

git clone https://github.com/ultralytics/yolov5.git
cd yolov5

然后,安装所需的 Python 包

pip install -r requirements.txt

步骤 2:准备数据
YOLOv5 需要的数据格式是图像和相应的标签文件,标签文件使用 YOLO 格式。

图像数据:将所有训练图像放在一个文件夹中,例如 datasets/train/images。
标签文件:每个图像文件需要一个对应的标签文件,格式为 .txt,存放在 datasets/train/labels 文件夹中。标签文件中的每一行代表一个对象,格式如下:
class_id x_center y_center width height

其中 class_id 是类别的索引,x_center 和 y_center 是对象中心点的相对坐标(归

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

火焰蔷薇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值