Elasticsearch 基本概念
Index:Elasticsearch用来存储数据的逻辑区域,它类似于关系型数据库中的database 概念。一个index可以在一个或者多个shard上面,同时一个shard也可能会有多个replicas。
Document:Elasticsearch里面存储的实体数据,类似于关系数据中一个table里面的一行数据。
document由多个field组成,不同的document里面同名的field一定具有相同的类型。document里面field可以重复出现,也就是一个field会有多个值,即multivalued。
Document type:为了查询需要,一个index可能会有多种document,也就是document type. 它类似于关系型数据库中的 table 概念。但需要注意,不同document里面同名的field一定要是相同类型的。
Mapping:它类似于关系型数据库中的 schema 定义概念。存储field的相关映射信息,不同document type会有不同的mapping。
下图是ElasticSearch和关系型数据库的一些术语比较:
| Relationnal database | Elasticsearch |
|---|---|
| Database | Index |
| Table | Type |
| Row | Document |
| Column | Field |
| Schema | Mapping |
| Schema | Mapping |
| Index | Everything is indexed |
| SQL | Query DSL |
| SELECT * FROM table… | GET http://… |
| UPDATE table SET | PUT http://… |
Python Elasticsearch DSL 使用简介
连接 Es:
Python操作Elasticsearch DSL详解

本文介绍了Elasticsearch的基本概念,包括Index、Document、Document Type和Mapping,并详细讲解了使用Python Elasticsearch DSL进行搜索、过滤和聚合操作的方法,如指定索引查询、多字段查询、范围过滤以及排序和分页等。
最低0.47元/天 解锁文章
3433

被折叠的 条评论
为什么被折叠?



