bzoj 1036 树的统计

题目链接:点击打开链接

题目大意:有一棵树,30000个点,每个点有权值,接下来有20w个操作,分为三种,一是改变某个点的权值,二是询问从a到b的路径上的点的权值的最大值,三是询问a到b上点的权值和。

一道裸的树链剖分+线段树:

对于树上的路径问题,可以先进行轻重链划分,再用线段树解决。

轻重链剖分和点的重标号可以用dfs也可以用bfs


#include <iostream>
#include <algorithm>
#include <string.h>
#include <vector>
#include <cstdio>
#define ll long long
#define N 30005
#define ls rt << 1
#define rs rt << 1 | 1

using namespace std;

typedef struct{
   int l,r,rt;
   ll maxn,sum;
}node;

typedef struct{
   int v;
}next;

vector<next>edge[N<<1];

node Tree[N<<4];
int weight[N];
int sz[N],son[N],maxn[N],q[N],Index[N],dep[N],fa[N],top[N],w[N],id[N];//id用来记录当前的点属于哪个链

void PushUp(int rt){
     Tree[rt].maxn = max(Tree[ls].maxn,Tree[rs].maxn);
     Tree[rt].sum = Tree[ls].sum + Tree[rs].sum;
}

void update(int p,int x,int rt){
     if(p == Tree[rt].l && p ==Tree[rt].r){
        Tree[rt].sum = x;
        Tree[rt].maxn = x;
        return ;
     }
     int mid;
     mid = (Tree[rt].l + Tree[rt].r) >> 1;
     if(p <= mid) update(p,x,ls);
     else update(p,x,rs);
     PushUp(rt);
}

void Build(int l,int r,int rt){
     Tree[rt].l = l;
     Tree[rt].r = r;
     if(l == r){
        Tree[rt].maxn = weight[Index[l]];
        Tree[rt].sum = weight[Index[l]];
        return ;
     }
     int mid;
     mid = (l + r) >> 1 ;
     Build(l,mid,ls);
     Build(mid+1,r,rs);
     PushUp(rt);
}

ll query(int op,int l,int r,int rt){
     if(Tree[rt].l == l&&Tree[rt].r == r){
        if(op == 0) return Tree[rt].maxn;
        else if(op == 1) return Tree[rt].sum;
     }
     int mid;
     mid =(Tree[rt].l+Tree[rt].r) >> 1;
     if(r <= mid) return query(op,l,r,ls);
     else if(l>mid) return query(op,l,r,rs);
     else {
        if(op == 0) return max(query(op,l,mid,ls),query(op,mid+1,r,rs));
        else if(op == 1) return query(op,l,mid,ls)+query(op,mid+1,r,rs);
     }
}

int lca(int x,int y){//重链的id一定小于轻边的id
    while(id[x]!=id[y]){
        if(id[x] > id[y]) swap(x,y);
        y = fa[top[y]];
    }
    if(dep[x] > dep[y]) swap(x,y);
    return x;
}


ll op1(int Lca,int a,int b){//对路径上的每一段连续的线段进行查询
   ll ret = -6000000000;
   while(1){
    if(dep[top[a]] <=dep[Lca]){
        ret = max(ret,query(0,w[Lca],w[a],1));
        break;
    }
    else {
        ret = max(ret,query(0,w[top[a]],w[a],1));
        a = fa[top[a]];
    }
   }
   while(1){
    if(dep[top[b]] <= dep[Lca]){
        ret = max(ret,query(0,w[Lca],w[b],1));
        break;
    }
    else {
        ret = max(ret,query(0,w[top[b]],w[b],1));
        b = fa[top[b]];
    }
   }
   return ret;
}

ll op2(int Lca,int a,int b){
   ll ret = 0;
   while(1){
    if(dep[top[a]] <=dep[Lca]){
        ret +=query(1,w[Lca],w[a],1);
        break;
    }
    else {
        ret += query(1,w[top[a]],w[a],1);
        a = fa[top[a]];
    }
   }
   while(1){
    if(dep[top[b]] <=dep[Lca]){
        ret += query(1,w[Lca],w[b],1);
        break;
    }
    else {
        ret += query(1,w[top[b]],w[b],1);
        b = fa[top[b]];
    }
   }
   ret -= query(1,w[Lca],w[Lca],1);
   return ret;
}

void init(){
      memset(maxn,-1,sizeof(maxn));
      memset(sz,0,sizeof(sz));
      memset(son,0,sizeof(son));
}


void bfs(int x){
     int f,r,u,v,time,cnt;
     f = r = 0;
     q[r++] = x;
     dep[x] = 1;
     while(f<r){
        u = q[f++];
        for(int i = 0;i<edge[u].size();i++){
            v = edge[u][i].v;
            if(v!=fa[u]){
                fa[v] = u;
                dep[v] = dep[u] + 1;
                q[r++] = v;
            }
        }
     }
     for(int i = r-1;i>=0; i--){
        sz[fa[q[i]]] += ++sz[q[i]];
        if(maxn[fa[q[i]]] < sz[q[i]]){
            maxn[fa[q[i]]] = sz[q[i]];
            son[fa[q[i]]] = q[i];
        }
     }
     fa[1] = 1;
     for(int i = 0;i < r; i++){
        if(son[fa[q[i]]]!=q[i]){
            top[q[i]] = q[i];
        }
        else{
            top[q[i]] = top[fa[q[i]]];
        }
     }
     cnt = 0;
     f = 0;r = 1;
     q[0] = x;
     while(f<r){
        u = q[f++];
        if(top[u] == u) id[u] = ++cnt;
        else{
            id[u] = id[top[u]];
        }
        for(int i = 0;i<edge[u].size();i++){
            v = edge[u][i].v;
            if(v!=fa[u]) q[r++] = v;
        }
     }
     f = 0;r = cnt = 1;
     q[0] = x;
     while(f<r){
        u = q[f++];
        v = u;
        Index[cnt] = v;
        w[v] = cnt++;
        while(son[v]){
            for(int i = 0;i<edge[v].size();i++){
                if(edge[v][i].v!=fa[v]&&edge[v][i].v!=son[v]){
                    q[r++] = edge[v][i].v;
                }
            }
            v = son[v];
            Index[cnt] = v;
            w[v] = cnt++;
        }
     }
}

/*int dfs(int x,int f,int de){//dfs法
     int s = 1,v,maxx = 0,tmp;
     fa[x] = f;
     dep[x] = de;
     for(int i=0;i<edge[x].size();i++){
            v = edge[x][i].v;
            if(v!=f){
            tmp = dfs(v,x,de+1);
            if(tmp > maxx){
                son[x] = v;
                maxx = tmp;
            }
            s += tmp;
            }
     }
     return sz[x] = s;
}

int Time = 1,cnt = 0;

void dfs2(int x,int tp){
     int v;
     top[x] = tp;
     Index[Time] = x;
     w[x] = Time++;
     if(son[x]) dfs2(son[x],tp);
     for(int i = 0;i < edge[x].size();i++){
        v = edge[x][i].v;
        if(v!=fa[x]){
        if(v != son[x]) dfs2(v,v);
        }
      }
}

void deal(int x){
     int f,r,u,v;
     f = 0;r = 1;
     q[0] = x;
     while(f<r){
        u = q[f++];
        if(top[u] == u)
        id[u] = ++cnt;
        else{
            id[u] = id[top[u]];
        }
        for(int i = 0;i<edge[u].size();i++){
            v = edge[u][i].v;
            if(v!=fa[u]) q[r++] = v;
        }
     }
}*/

char opr[34];

int main(){
    init();
    int n,a,b,q;
    ll ans;
    next tmp;
    cin>>n;
    for(int i = 0;i < n-1;i++){
        scanf("%d%d",&a,&b);
        tmp.v = b;
        edge[a].push_back(tmp);
        tmp.v = a;
        edge[b].push_back(tmp);
    }
    for(int i = 1;i <= n; i++){
        scanf("%d",&weight[i]);
    }
    bfs(1);
    //dfs(1,1,1);
    //dfs2(1,1);
   // deal(1);
    Build(1,n,1);
    cin>>q;
    int LCA;
    for(int i = 0;i < q; i++){
        scanf("%s",opr);
        if(opr[0] == 'Q'){
            scanf("%d%d",&a,&b);
            LCA = lca(a,b);
            if(opr[1] == 'M') ans = op1(LCA,a,b);
            else ans = op2(LCA,a,b);
            printf("%lld\n",ans);
        }
        else{
            scanf("%d%d",&a,&b);
            update(w[a],b,1);
        }
    }
    return 0;
}
加上一组数据
14
1 2
2 5
2 6
6 11
6 12
1 3
3 7
1 4
4 8
4 9
9 13
13 14
4 10
5 9 7 1 13 10 8 6 2 5 11 12 3 4
8
QMAX 11 12
QSUM 11 12
QSUM 5 10
QMAX 5 10
QMAX 11 14
QSUM 11 14
QMAX 11 5
QSUM 11 5


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值