题目大意:一个
n∗n
的矩阵
M
,每个位置有一个值
题解:将每一个数字分解,看有多少个2和多少个5。那么问题就变成了求从左上到右下经过最少的2或最少的5的路径。dp即可。注意,当有0存在时,如果结尾0大于1,那么一定会走过0的一条路径。
#include <bits/stdc++.h>
using namespace std;
int a[1005][1005],b[1005][1005];
int dp[1005][1005][2][2];
int st[1005][1005][2];
void print(int x,int y,int op){
if(x == 0 && y == 0){
return ;
}
if(st[x][y][op]){
print(x-1,y,op);
printf("D");
}
else{
print(x,y-1,op);
printf("R");
}
return ;
}
int main(){
int n;
scanf("%d",&n);
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(st,0,sizeof(st));
int fi,fj;
fi = fj = -1;
for(int i = 0;i < n;i++){
for(int j = 0;j < n;j++){
int x;
scanf("%d",&x);
if(!x){
fi = i;
fj = j;
}
while(x&&x%2==0) {
x>>=1;
a[i][j]++;
}
while(x&&x%5==0){
x/=5;
b[i][j]++;
}
}
}
for(int i = 0;i < 2;i++){
dp[0][0][i][0] = a[0][0];
dp[0][0][i][1] = b[0][0];
}
for(int i = 1;i < n;i++){
for(int j = 0;j < 2;j++){
dp[i][0][j][0] = dp[i-1][0][j][0]+a[i][0];
dp[i][0][j][1] = dp[i-1][0][j][1]+b[i][0];
st[i][0][j] = 1;
dp[0][i][j][0] = dp[0][i-1][j][0]+a[0][i];
dp[0][i][j][1] = dp[0][i-1][j][1]+b[0][i];
}
}
for(int i = 1;i < n;i++){
for(int j = 1;j < n;j++){
if(dp[i][j-1][0][0] == dp[i-1][j][0][0]){
dp[i][j][0][0] = dp[i][j-1][0][0]+a[i][j];
if(dp[i-1][j][0][1]<dp[i][j-1][0][1]) st[i][j][0] = 1;
dp[i][j][0][1] = min(dp[i-1][j][0][1],dp[i][j-1][0][1])+b[i][j];
}
else if(dp[i][j-1][0][0] < dp[i-1][j][0][0]){
dp[i][j][0][0] = dp[i][j-1][0][0]+a[i][j];
dp[i][j][0][1] = dp[i][j-1][0][1]+b[i][j];
}
else{
dp[i][j][0][0] = dp[i-1][j][0][0]+a[i][j];
dp[i][j][0][1] = dp[i-1][j][0][1]+b[i][j];
st[i][j][0] = 1;
}
if(dp[i][j-1][1][1] == dp[i-1][j][1][1]){
dp[i][j][1][1] = dp[i][j-1][1][1]+b[i][j];
if(dp[i-1][j][1][0]<dp[i][j-1][1][0]) st[i][j][1] = 1;
dp[i][j][1][0] = min(dp[i-1][j][1][0],dp[i][j-1][1][0])+a[i][j];
}
else if(dp[i][j-1][1][1] < dp[i-1][j][1][1]){
dp[i][j][1][1] = dp[i][j-1][1][1]+b[i][j];
dp[i][j][1][0] = dp[i][j-1][1][0]+a[i][j];
}
else{
dp[i][j][1][1] = dp[i-1][j][1][1]+b[i][j];
dp[i][j][1][0] = dp[i-1][j][1][0]+a[i][j];
st[i][j][1] = 1;
}
}
}
/*for(int i = 0;i < n;i++){
for(int j= 0;j < n;j++){
printf("%d/%d ",a[i][j],b[i][j]);
}
printf("\n");
}
cout<<endl;*/
/*for(int k = 0;k < 2;k++){
for(int i = 0;i < n;i++){
for(int j = 0;j < n;j++){
printf("%d/%d ",dp[i][j][k][0],dp[i][j][k][1]);
}
printf("\n");
}
printf("\n");
}*/
if(fi!= -1){
if(min(min(dp[n-1][n-1][0][0],dp[n-1][n-1][0][1]),min(dp[n-1][n-1][1][0],dp[n-1][n-1][1][1]))>1){
printf("1\n");
for(int i = 0;i < fi;i++) printf("D");
for(int j = 0;j < fj;j++) printf("R");
for(int i = fi;i < n-1;i++) printf("D");
for(int i = fj;i < n-1;i++) printf("R");
return 0;
}
}
if(min(dp[n-1][n-1][0][0],dp[n-1][n-1][0][1])<min(dp[n-1][n-1][1][0],dp[n-1][n-1][1][1])){
printf("%d\n",min(dp[n-1][n-1][0][0],dp[n-1][n-1][0][1]));
print(n-1,n-1,0);
}
else{
printf("%d\n",min(dp[n-1][n-1][1][0],dp[n-1][n-1][1][1]));
print(n-1,n-1,1);
}
return 0;
}