CF 2B The least round way

6 篇文章 0 订阅

题目大意:一个 nn 的矩阵 M ,每个位置有一个值Mi,j,从左上角出发到右下角,只能向右或向下走,并将途经的数字相乘,求一条路径使得乘积的结尾零最少。

题解:将每一个数字分解,看有多少个2和多少个5。那么问题就变成了求从左上到右下经过最少的2或最少的5的路径。dp即可。注意,当有0存在时,如果结尾0大于1,那么一定会走过0的一条路径。

#include <bits/stdc++.h>

using namespace std;

int a[1005][1005],b[1005][1005];
int dp[1005][1005][2][2];
int st[1005][1005][2];

void print(int x,int y,int op){
    if(x == 0 && y == 0){
        return ;
    }
    if(st[x][y][op]){
        print(x-1,y,op);
        printf("D");
    }
    else{
        print(x,y-1,op);
        printf("R");
    }
    return ;
}

int main(){
    int n;
    scanf("%d",&n);
    memset(a,0,sizeof(a));
    memset(b,0,sizeof(b));
    memset(st,0,sizeof(st));
    int fi,fj;
    fi = fj = -1;
    for(int i = 0;i < n;i++){
        for(int j = 0;j < n;j++){
            int x;
            scanf("%d",&x);
            if(!x){
                fi = i;
                fj = j;
            }
            while(x&&x%2==0) {
                x>>=1;
                a[i][j]++;
            }
            while(x&&x%5==0){
                x/=5;
                b[i][j]++;
            }
        }
    }
    for(int i = 0;i < 2;i++){
        dp[0][0][i][0] = a[0][0];
        dp[0][0][i][1] = b[0][0];
    }
    for(int i = 1;i < n;i++){
        for(int j = 0;j < 2;j++){
            dp[i][0][j][0] = dp[i-1][0][j][0]+a[i][0];
            dp[i][0][j][1] = dp[i-1][0][j][1]+b[i][0];
            st[i][0][j] = 1;
            dp[0][i][j][0] = dp[0][i-1][j][0]+a[0][i];
            dp[0][i][j][1] = dp[0][i-1][j][1]+b[0][i];
        }
    }
    for(int i = 1;i < n;i++){
        for(int j = 1;j < n;j++){
            if(dp[i][j-1][0][0] == dp[i-1][j][0][0]){
                dp[i][j][0][0] = dp[i][j-1][0][0]+a[i][j];
                if(dp[i-1][j][0][1]<dp[i][j-1][0][1]) st[i][j][0] = 1;
                dp[i][j][0][1] = min(dp[i-1][j][0][1],dp[i][j-1][0][1])+b[i][j];
            }
            else if(dp[i][j-1][0][0] < dp[i-1][j][0][0]){
                dp[i][j][0][0] = dp[i][j-1][0][0]+a[i][j];
                dp[i][j][0][1] = dp[i][j-1][0][1]+b[i][j];
            }
            else{
                dp[i][j][0][0] = dp[i-1][j][0][0]+a[i][j];
                dp[i][j][0][1] = dp[i-1][j][0][1]+b[i][j];
                st[i][j][0] = 1;
            }
            if(dp[i][j-1][1][1] == dp[i-1][j][1][1]){
                dp[i][j][1][1] = dp[i][j-1][1][1]+b[i][j];
                if(dp[i-1][j][1][0]<dp[i][j-1][1][0]) st[i][j][1] = 1;
                dp[i][j][1][0] = min(dp[i-1][j][1][0],dp[i][j-1][1][0])+a[i][j];
            }
            else if(dp[i][j-1][1][1] < dp[i-1][j][1][1]){
                dp[i][j][1][1] = dp[i][j-1][1][1]+b[i][j];
                dp[i][j][1][0] = dp[i][j-1][1][0]+a[i][j];
            }
            else{
                dp[i][j][1][1] = dp[i-1][j][1][1]+b[i][j];
                dp[i][j][1][0] = dp[i-1][j][1][0]+a[i][j];
                st[i][j][1] = 1;
            }
        }
    }
    /*for(int i = 0;i < n;i++){
        for(int j= 0;j < n;j++){
            printf("%d/%d ",a[i][j],b[i][j]);
        }
        printf("\n");
    }
    cout<<endl;*/
    /*for(int k = 0;k < 2;k++){
    for(int i = 0;i < n;i++){
        for(int j = 0;j < n;j++){
            printf("%d/%d ",dp[i][j][k][0],dp[i][j][k][1]);
        }
        printf("\n");
    }
    printf("\n");
    }*/
    if(fi!= -1){
        if(min(min(dp[n-1][n-1][0][0],dp[n-1][n-1][0][1]),min(dp[n-1][n-1][1][0],dp[n-1][n-1][1][1]))>1){
            printf("1\n");
            for(int i = 0;i < fi;i++) printf("D");
            for(int j = 0;j < fj;j++) printf("R");
            for(int i = fi;i < n-1;i++) printf("D");
            for(int i = fj;i < n-1;i++) printf("R");
            return 0;
        }
    }
    if(min(dp[n-1][n-1][0][0],dp[n-1][n-1][0][1])<min(dp[n-1][n-1][1][0],dp[n-1][n-1][1][1])){
        printf("%d\n",min(dp[n-1][n-1][0][0],dp[n-1][n-1][0][1]));
        print(n-1,n-1,0);
    }
    else{
        printf("%d\n",min(dp[n-1][n-1][1][0],dp[n-1][n-1][1][1]));
        print(n-1,n-1,1);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值