[NOI 2006] 最大获利

题目传送-Luogu4174

题意:

要建\(n\)个站,建第i个站的花费\(p_i\)
\(m\)个收益机会,当第\(A_i\)和第\(B_i\)个站都被建立时可以得到收益\(C_i\).
问最大收益为多少。
\(n\le5000,m\le50000,0\le C_i,p_i\le100\)

题解:

考虑刚开始你能获得全部收益,然后要丢掉一些亏钱的。。
考虑网络流求最小割。
对于所有i,建立\(S \rightarrow i\)的边权为\(p_i\)的边.
对于所有机会i,建立\(A_i\rightarrow i+n\),\(B_i \rightarrow i+n\)边权为INF,以及\(i+n \rightarrow T\),边权为\(C_i\).
那么就是最小割了

过程:

网络流日常打错:
1.bfs忘加必须有流量的限制。。

代码:

const int N=510,M=250010;
int n,m;
int p[N];
struct PEO {
    int a,b,v;
    inline void in() {
        read(a); read(b); read(v);
    }
}a[M];
namespace FLOW {
    const int ALL=N+M,EDGE=(N+M*3)<<1;
    int S,T;
    int head[ALL],nxt[EDGE],to[EDGE],cap[EDGE],lst=1;
    inline void adde(int x,int y,int c) {
        nxt[++lst]=head[x]; to[lst]=y; cap[lst]=c; head[x]=lst;
    }
    inline void con(int x,int y,int c) {
        adde(x,y,c); adde(y,x,0);
    }
    int stp[ALL];
    inline bool bfs(int S) {
        queue<int> que; mem(stp,63);
        que.push(S); stp[S]=0; 
        while(!que.empty()) {
            int u=que.front(); que.pop();
            for(int i=head[u];i;i=nxt[i]) {
                int v=to[i];
                if(cap[i] && stp[v]>stp[u]+1) {
                    stp[v]=stp[u]+1;
                    que.push(v);
                }
            }
        }
        return stp[T]!=stp[0];
    }
    int cur[ALL];
    inline int dfs(int u,int f) {
        if(!f || u==T) return f;
        for(int &i=cur[u];i;i=nxt[i]) {
            int v=to[i];
            if(stp[v]==stp[u]+1 && cap[i]) {
                int flow=dfs(v,min(f,cap[i]));
                if(flow) {
                    cap[i]-=flow; cap[i^1]+=flow;
                    return flow;
                }
            }
        }
        return 0;
    }
    inline int Dinic() {
        int Flow=0,add=0;
        while(bfs(S)) {

            memcpy(cur,head,sizeof(head));
            do {add=dfs(S,INF); Flow+=add;} while(add);
        }
        return Flow;
    }
    inline void Construct() {
        S=n+m+1; T=S+1;
        for(int i=1;i<=n;i++) {
            con(S,i,p[i]);
        }
        for(int i=1;i<=m;i++) {
            con(a[i].a,i+n,INF);
            con(a[i].b,i+n,INF);
            con(i+n,T,a[i].v);
        }
    }
    inline int main() {
        Construct();
        // printf("%lld %lld %lld %lld\n",S,T,lst,EDGE);
        return Dinic();
    }
}
int sum=0;
signed main() {
    read(n); m=n*n;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++) {
            int p=(i-1)*n+j;
            a[p].a=i; a[p].b=j; read(a[p].v);
            sum+=a[p].v;
        }
    for(int i=1;i<=n;i++) read(p[i]);
    int ans=FLOW::main();
    printf("%d\n",sum-ans);
    return 0;
}

用时:25min

转载于:https://www.cnblogs.com/functionendless/p/9556661.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值