Spark 与 MapReduce的区别

本文对比了Spark与MapReduce在Shuffle过程中的处理方式。MapReduce采用边fetch边使用combine()处理的方式,而Spark则利用可聚合数据结构如HashMap进行处理,无需等待所有数据shuffle完成。此外,文中还介绍了MapReduce的工作原理及其各组件的功能。
摘要由CSDN通过智能技术生成

学习参考自 http://spark-internals.books.yourtion.com/markdown/4-shuffleDetails.html

 

1.  Shuffle read 边 fetch 边处理还是一次性 fetch 完再处理?

边 fetch 边处理。

  • MapReduce

     shuffle 阶段就是边 fetch 边使用 combine() 进行处理,只是 combine() 处理的是部分数据。MapReduce 为了让进入 reduce() 的 records 有序,必须等到全部数据都 shuffle-sort 后再开始 reduce()。

  • Spark

    因为 Spark 不要求 shuffle 后的数据全局有序,因此没必要等到全部数据 shuffle 完成后再处理。

    使用可以 aggregate 的数据结构,比如 HashMap。每 shuffle 得到(从缓冲的 FileSegment 中 deserialize 出来)一个 \<key, value\=""> record,直接将其放进 HashMap 里面。如果该 HashMap 已经存在相应的 Key,那么直接进行 aggregate 也就是 func(hashMap.get(Key), Value),比如上面 WordCount 例子中的 func 就是 hashMap.get(Key) + Value,并将 func 的结果重新 put(key) 到 HashMap 中去。

2.  Shuffle --> Merge --> Combine --> Sort
3. DAG 有向无环图

  一个有向图无法从某个顶点出发经过若干条边回到该点。

 
 
4.  Mapreduce 工作原理:
  • Mapreduce的默认排序:

        按照key值进行排序的,如果key为封装int的IntWritable类型,那么按照数字大小对key排序,如果key为封装为String的Text类型,那么按照字典顺序对字符串排序。

  • 也就是在map中将读入的数据转化成IntWritable型,然后作为key值输出(value任意)。

        reduce拿到<key,value-list>之后,将输入的key作为value输出,并根据value-list中元素的个数决定输出的次数。输出的key(即代码中的linenum)是一个全局变量,它统计当前key的位次。

  • combine 分为map端和reduce端,作用是把同一个key的键值对合并在一起,可以自定义的。
    combine函数把一个map函数产生的<key,value>对(多个key,value)合并成一个新的<key2,values2>, 将新的<key2,values2>作为输入到reduce函数中
    (这个values2,表示有多个value。这个合并的目的是为了减少网络传输。
  • partition是分割map每个节点的结果,按照key分别映射给不同的reduce,也是可以自定义的。

        (这里其实可以理解归类,我们对于错综复杂的数据归类。比如在动物园里有牛羊鸡鸭鹅,他们都是混在一起的,但是到了晚上他们就各自牛回牛棚,羊回羊圈,鸡回鸡窝)

          partition的作用就是把这些数据归类。只不过在写程序的时候,mapreduce使用哈希HashPartitioner帮我们归类了。也可以自定义。

  • Map的结果,会通过partition分发到Reducer上
  • Reducer做完Reduce操作后,通过OutputFormat,进行输出
  • shuffle阶段的主要函数是fetchOutputs(),  这个函数的功能就是将map阶段的输出,copy到reduce 节点本地。(comibine 和partition主要使用的函数)
posted on 2016-06-16 19:21  Suckseedeva 阅读( ...) 评论( ...) 编辑 收藏

转载于:https://www.cnblogs.com/skyEva/p/5592003.html

### 回答1: SparkMapReduce都是大数据处理框架,但它们有一些显著的区别。 1. 架构不同: Spark采用内存计算模型,而MapReduce采用磁盘计算模型。这意味着Spark可以在内存中读取和处理数据,而MapReduce需要在磁盘上读取和处理数据。 2. 速度不同:由于Spark采用了内存计算模型,它的计算速度比MapReduce快得多。 3. 支持的操作不同: Spark支持高级操作,如迭代计算和图计算,而MapReduce只支持基本的map和reduce操作。 4. 应用场景不同: Spark适用于多种大数据场景,如机器学习、流处理、图计算等,而MapReduce主要用于批处理作业。 ### 回答2: SparkMapReduce是两种用于大数据处理的开源框架。它们在处理方式、性能和灵活性等方面有一些区别。 首先,Spark是一种基于内存计算的分布式计算框架,而MapReduce是一种基于硬盘的分布式计算模型。这意味着Spark可以将计算结果存储在内存中,从而提供更快的数据访问速度和更短的处理延迟。而MapReduce则需要将数据写入硬盘,导致处理速度相对较慢。 其次,Spark提供了更多种类的操作,例如Map、Reduce、Filter、Join等,而MapReduce只有Map和Reduce两种基本操作。这使得Spark更适合处理复杂的数据处理任务,可以通过编写更高级的操作来简化开发。 此外,Spark还提供了基于RDD(弹性分布式数据集)的抽象,提供了更灵活的数据处理方式。而MapReduce则需要将中间结果写入硬盘,从而限制了数据处理的灵活性。 最后,Spark还提供了交互式数据分析和流式数据处理等功能,使得用户可以更方便地对数据进行实时分析和处理。而MapReduce主要用于批处理任务,不适用于实时数据处理场景。 综上所述,Spark相对于MapReduce具有更高的性能和更大的灵活性,适用于更多种类的数据处理任务。但在一些特定的场景下,如批处理任务,MapReduce仍然是一个可选择的解决方案。 ### 回答3: SparkMapReduce是两种不同的大数据处理框架。它们在处理速度、内存使用、编程模型和容错性等方面有着显著的区别。 首先,Spark相对于MapReduce具有更高的处理速度。这是因为Spark将数据存储在内存中,通过内存计算避免了磁盘IO的开销,从而大大提高了处理效率。相比之下,MapReduce需要将数据频繁地读写到磁盘中,会导致较高的IO开销。 其次,Spark相比于MapReduce更加灵活,能够处理更为复杂的计算任务。Spark提供了一个强大的抽象数据结构RDD(Resilient Distributed Datasets),可以在内存中对数据进行多次迭代处理,支持多种操作(如过滤、转换、聚合等)和编程语言(如Scala、Java和Python)。而MapReduce则需要在每个计算阶段都将数据写入磁盘,导致编程模型相对受限。 此外,Spark拥有更好的容错性。Spark通过RDD的弹性特性实现了数据的自动恢复和重新计算,从而能够在节点故障后快速恢复。而MapReduce则需要重新执行整个任务,具有较差的容错性。 最后,SparkMapReduce在生态系统方面也存在一些差异。Spark的生态系统更加丰富,支持包括Spark Streaming、Spark SQL和MLlib等扩展,可以处理更多类型的数据处理任务。而MapReduce更加专注于批处理,只有Hadoop生态系统中的一部分工具与之兼容。 综上所述,Spark相对于MapReduce具有更高的处理速度、更灵活的编程模型、更好的容错性和更丰富的生态系统。这些优势使得Spark大数据处理领域越来越受欢迎。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值