- 博客(4)
- 收藏
- 关注
原创 深度学习初学4:循环神经网络(RNN)及其在自然语言处理(NLP)中的应用
通过Backpropagation Through Time (BPTT)计算梯度:尽管基础RNN存在长期依赖问题,但其思想催生了LSTM、GRU等改进架构,以及Transformer革命性模型。掌握这些基础原理,是理解现代NLP技术的必经之路。门控循环单元和长短期记忆网络通过精巧的门控设计,显著提升了RNN处理长序列的能力。当结合深度架构和双向处理时,这些模型能够捕捉文本中复杂的时空依赖关系。在实际应用中,建议根据任务需求和数据规模选择合适的架构,并通过细致的调优释放模型潜力。
2025-06-04 08:44:54
875
原创 深度学习初学3:视觉应用
YOLO系列算法通过将目标检测转化为回归问题,实现了实时高效的检测性能。最新版本YOLOv9在保持高精度的同时,进一步优化了计算效率,在工业界得到广泛应用。理解YOLOv1的核心思想是掌握后续改进版本的关键。FP%7DFN%7D。
2025-05-23 21:09:40
808
原创 深度学习初学2:卷积神经网络
:CNN通过局部连接、权值共享和层次化特征提取,解决了传统全连接网络的局限性。从LeNet到ResNet的演进,体现了网络深度增加与结构优化的平衡。建议结合PyTorch实战加深理解。
2025-05-23 20:50:13
865
原创 深度学习初学1:线性回归与BP神经网络核心原理
本文将根据上课学习的知识解析深度学习中的两大基础模块:线性回归与误差反向传播(BP)神经网络,结合公式推导与PyTorch代码实现,帮助像笔者一样的初学者建立系统认知。
2025-04-28 17:20:47
732
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人