1.正定矩阵
一个
n×n
的实
对称矩阵
M
是
正定
的,
当且仅当
对于所有的非零实系数
向量
z
,都有
zTMz > 0
。其中
z
T
表示
z
的
转置
。
2.负定矩阵
与正定矩阵相对应的,一个n×n的埃尔米特矩阵是负定矩阵当且仅当对所有不为零的
(或
),都有:
3.半正定矩阵
是半正定矩阵当且仅当对所有不为零的
(或
),都有:
4.半负定矩阵
是半负定矩阵当且仅当对所有不为零的
(或
),都有:
正定阵的判别[编辑]
对n×n的埃尔米特矩阵M,下列性质与“M为正定矩阵”等价:
1. | 矩阵![]() ![]() ![]() 个正交基可以表示为一个实对角矩阵)。因此,M是正定阵当且仅当相应的D的对角线上元素都是正的。 |
2. | 半双线性形式
定义了一个Cn上的内积。实际上,所有Cn上的内积都可看做由某个正定阵通过此种方式得到。 |
3. | M是n个线性无关的k维向量![]() 换句话说,M具有 |
4. | M的所有顺序主子式,也就是顺序主子阵的行列式都是正的(西尔维斯特准则)。明确来说,就是考察下列矩阵的行列式:
对于半正定矩阵来说,相应的条件应改为所有的主子式非负。顺序主子式非负并不能推出矩阵是半正定的。比如以下例子: |
5. | 存在唯一的下三角矩阵![]()
其中 |
对于实对称矩阵,只需将上述性质中的改为
,将“共轭转置”改为“转置”就可以了。
相关性质[编辑]
若为半正定阵,可以写作
。如果
是正定阵,可以写作
。这个记法来自泛函分析,其中的正定阵定义了正算子。
对于一般的埃尔米特矩阵,、
,
当且仅当
。这样可以定义一个在埃尔米特矩阵集合上的偏序关系。类似地,可以定义
。
1. | 每个正定阵都是可逆的,它的逆也是正定阵。如果![]() ![]() |
2. | 如果![]() ![]() ![]() 如果 |
3. | 如果![]() ![]() ![]() |
4. | 矩阵![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5. | 如果![]() ![]() ![]() |
6. | 对矩阵![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7. | 设![]() ![]() ![]() ![]() ![]() ![]() |
8. | 如果![]() ![]() |
9. | 如果![]() ![]() ![]() ![]() |
from:
http://zh.wikipedia.org/wiki/正定矩阵