自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(57)
  • 收藏
  • 关注

原创 26.Chroma 教程

Chroma是一款轻量级本地向量数据库,支持嵌入管理、查询、过滤和持久化功能。它可与大语言模型结合构建RAG问答系统。主要功能包括:安装通过pip,使用DuckDB+Parquet作为存储后端;通过Collection管理数据,支持添加文本/自定义向量;提供相似性查询和元数据过滤功能;支持按ID或条件删除数据;可查看文档数和预览数据;具备持久化存储能力;能与LangChain集成使用自定义Embedding。该数据库操作简洁,包含初始化、集合管理、数据增删改查等核心方法,适合本地部署的AI应用开发。

2025-11-19 19:30:17 841

原创 25.大模型部署vLLM推理框架

本文介绍了使用vLLM框架进行大模型本地化部署的完整流程。主要内容包括:1)环境安装与配置,推荐使用docker方式;2)两种模型部署方式(命令行参数和配置文件);3)通过OpenAI SDK进行API测试调用;4)性能测试脚本开发,评估首token时间、QPS等关键指标;5)在腾讯Cloud Studio平台上的实战操作演示。文章以Qwen2.5-1.5B模型为例,详细说明了从环境搭建到性能测试的全过程,适用于企业私有化部署场景,帮助读者掌握单机多卡环境下的模型部署技能。

2025-11-16 16:13:12 841

原创 24.模型量化实践

摘要:本文介绍了bitsandbytes模块的量化原理及其在大模型部署中的应用。该工具通过INT8/INT4量化技术显著减少显存占用(INT8为FP32的25%,INT4为12.5%),同时利用GPU的TensorCore加速推理。实验表明,Qwen1.5-14B-Chat模型在INT8和INT4量化后仍保持流畅对话和代码生成能力,而预训练模型Qwen2.5-32B量化后不具备对话能力。使用vLLM部署时需注意量化参数设置,且仅支持单卡张量并行。量化在保持模型性能的同时有效提升了推理效率,适用于资源受限场景

2025-11-16 15:28:49 1282

原创 23.模型部署与推理优化

本文介绍了大语言模型推理优化的关键技术,主要包括:1)注意力机制优化如FlashAttention系列,通过分块计算和算子融合提升GPU计算效率;2)KVCache技术将注意力复杂度从O(N²)降至O(N);3)PagedAttention借鉴分页机制管理显存;4)模型优化方法包括量化、蒸馏和剪枝;5)服务优化技术如连续批处理提升吞吐量。这些方法在vLLM等框架中已集成实现,可显著提升推理速度和资源利用率,其中FlashAttention V3对Hopper GPU的优化尤为突出。

2025-11-16 15:21:07 1278

原创 22.与人类对齐的背景与标准

输出不符合人类价值观:模型可能输出歧视性、暴力、违法等内容。逻辑错误或胡编乱造:模型容易自信地给出错误答案,即“幻觉”问题(hallucination)。拒绝有用问题或出现偏见:模型可能拒答合法的问题,或者带有文化偏见。仔细思考大模型为什么会输出的内容不符合人类的价值观?在大语言模型的预训练和有监督微调的过程中,主要训练目标是根据上下文内容来预测下一个词元,但是,这一过程并未充分考虑人类的价值观或偏好,可能导致大语言模型从数据中学习到不符合人类期望的生成模式。

2025-11-14 19:12:29 802

原创 21.模型微调——LLM的PEFT微调方法

PEFT(参数高效微调)方法通过仅微调少量额外参数,显著降低了大模型在下游任务中的计算和存储成本。主要包括三类方法:1)Prefix-Tuning通过在输入前添加可训练前缀向量;2)Adapter-Tuning在模型层间插入小型适配器模块;3)LoRA采用低秩分解矩阵近似参数更新。其中LoRA冻结原始权重,注入可训练的低秩矩阵,是目前效果最优的通用方法。HuggingFace的PEFT库实现了这些技术,使大模型能在消费级硬件上高效微调。这些方法大幅减少了训练参数量,同时保持了模型性能。

2025-11-12 19:21:04 1453

原创 20.模型微调——Prompt-Tuning方法

NLP任务发展经历了四个范式:传统机器学习、深度学习、预训练微调和提示学习。Prompt-Tuning作为最新范式,通过构建模板和标签映射将下游任务转化为预训练任务,显著减少数据需求。其发展历程包括离散提示(GPT3、PET)和连续提示(PromptTuning、P-tuning、PPT)两种方法。连续提示通过参数化模板向量,解决了离散提示方差大的问题。该方法尤其适合大模型场景,可在冻结主模型参数情况下实现小样本学习,但存在收敛慢、调参复杂等挑战。当前研究正朝着自动化模板构建和跨任务迁移方向深入探索。

2025-11-11 21:35:15 1352

原创 19.模型微调——全参微调qwen-72B显存估计

项目推荐配置GPU 数量≥16 张 A100 80G(或 ≥32张 A100 40G)最小总显存≥1.2 TB(模型 + 梯度 + 优化器)模型精度优化器AdamW(默认)或 8-bit Adam(节省内存)batch size128~512(依赖 grad accumulation)并行框架推荐 DeepSpeed ZeRO-3 / Megatron-LM。

2025-11-11 21:05:27 915

原创 18.模型微调——模型训练与效率估计

本文系统介绍大语言模型训练的核心技术挑战与解决方案。首先阐述3D并行训练技术(数据并行、流水线并行、张量并行)的协同应用,分析零冗余优化器(ZeRO)如何减少显存冗余。其次探讨激活重计算和混合精度训练技术,前者通过选择性重计算来降低显存消耗,后者通过16/32位混合精度提升计算效率。在模型评估方面,详细推导了参数量计算公式,并以LLaMA为例验证计算准确性。最后建立训练运算量、时间及显存占用的估算模型,提供GPU配置建议。

2025-11-11 17:02:46 1126

原创 17.模型微调——微调数据集构建

构建高质量指令数据集的方法包括:1)将传统NLP任务(如翻译、摘要等)转化为指令格式,添加任务描述;2)利用日常对话数据,但高质量标注数据稀缺且成本高;3)通过大模型半自动化合成数据(如Self-Instruct方法)。提升方法包括优化指令格式设计、扩展指令数量(但超过7.2M条后收益递减)以及重写筛选指令。研究表明,数据质量比数量更重要,垂直领域少量高质量数据也能取得良好效果。实践中可结合人工标注与大模型合成来构建多样化指令数据集。

2025-11-11 16:16:29 1212

原创 16.Dify接入外部知识库

Dify通过集成RAGFlow外部知识库API解决了原有知识库功能不足的问题。RAGFlow是一款开源RAG引擎,具备深度文档理解能力,支持PDF、Word等复杂文档格式的OCR识别和结构化处理。安装需4核CPU、16GB内存和50GB硬盘空间,通过修改配置文件完成部署。用户可在RAGFlow中创建知识库,上传文件并选择解析方式(如常规分块、问答对、简历解析等),然后通过API与Dify连接。

2025-11-09 20:58:02 1165

原创 15.RAG

RAG(检索增强生成)技术通过结合检索系统与生成模型,提升大语言模型(LLM)回答的准确性与时效性。其流程包括:1)从向量化知识库中检索相关内容;2)将检索结果作为上下文输入生成模型;3)生成最终回答。知识库构建需选择数据源(如PDF、DOCX等),设置分段模式(通用/父子模式)和索引方法(经济/高质量模式),并配置检索方式(向量/全文/混合检索)。Dify平台支持知识库创建、分段优化、召回测试及与AIAgent/工作流集成,例如通过“知识检索”节点增强LLM输出的可靠性。

2025-11-09 20:13:15 1208

原创 14.大语言模型微调语料构建

本文介绍了AI模型微调的基本步骤和工作流程实现方法。模型微调包括选择预训练模型、准备数据集、调整结构、设置参数、训练和评估部署等环节。针对数据集制作门槛高的问题,提出通过Dify工作流生成语料方案,该流程包含开始节点、文档解析、数据处理、LLM生成等阶段,最终输出符合要求的JSONL格式微调数据。测试结果显示,系统能成功生成包含system/user/assistant三角色的结构化训练数据,为普通用户提供了便捷的大模型微调语料制作工具。

2025-11-09 19:44:09 21964 6

原创 13.Dify介绍

Dify是一款开源的大语言模型应用开发平台,提供BaaS服务,让开发者快速构建生成式AI应用。平台支持多种模型接入(推理、Embedding、语音转文字)、5种应用类型(聊天助手、文本生成等)和可视化工作流编排(包含多个功能节点)。其核心功能包括知识库管理(实现RAG技术)、灵活的流程设计以及多场景应用开发。安装需WSL和Docker环境,提供直观界面简化开发流程,适合从简单对话到复杂业务场景的AI应用构建。

2025-11-08 02:36:56 920

原创 12.GPTs及Coze应用

2023年11月,OpenAI 为旗下的 ChatGPT 推出了一项名为“GPTs”的服务,允许用户无需写代码就可以根据特定需求创建“属于自己的 ChatGPT 版本”,也就是基于 ChatGPT 创建定制化的个人 AI 助手。截止到2024年1月,已经有超过300万个性化ChatGPT诞生。,注意需要科学上网,以及当前只针对plus用户开通了使用权限。学习笔记文档,通常会针对不同的知识点进行分块介绍,为了保证文档上传到知识库后可以按照不同模块进行拆分,我在每个模块标题前手动添加了###分隔符。

2025-11-06 22:55:08 934

原创 11.大模型Agent应用

本项目基于CrewAI框架开发了一个多Agent协作系统,实现情书自动创作与邮件发送功能。系统包含三个角色Agent:作家负责情感内容创作(300字以内)、编辑负责文本格式化与本地存储、寄信人负责邮件发送。通过自定义工具类实现文本保存和邮件发送功能,采用顺序流程执行任务。项目展示了AI代理在特定场景下的协作能力,从内容生成到最终邮件发送的全流程自动化。技术栈包括Python3.10/3.11、CrewAI框架以及相关第三方库,支持通过本地大模型或云端API运行。

2025-11-06 22:38:46 354

原创 10.大模型Agent介绍与应用

摘要: AIAgent(人工智能代理)是能够感知环境、自主决策和执行任务的智能实体,包括物理或虚拟形式。主要分为简单反射型、目标导向型和学习型三类。现代AIAgent以大型语言模型(LLM)为核心,通过提示词、记忆、规划和行动等模块协同工作,实现复杂任务处理(如客户退货请求)。与传统软件不同,AIAgent能解决更广泛的问题。应用场景涵盖客服、教育、医疗等领域,开发工具包括百度AgentBuilder、LangChain、AutoGen等开源框架,助力高效构建智能代理系统。

2025-11-06 20:14:51 1027

原创 09.MCP协议介绍

摘要: MCP协议(模型上下文协议)是Anthropic于2024年推出的开放标准,旨在通过标准化接口(如JSON-RPC)统一大模型与外部数据源/工具的通信,解决数据孤岛问题。其核心是客户端-服务器架构:模型作为客户端,外部工具作为服务器,均遵循MCP规范实现“即插即用”交互。MCP基于Function Calling技术,但通过更高层封装简化开发,支持本地(stdio)和远程(SSE/HTTP)通信。目前已有开源SDK及成百上千的MCP服务器生态(如GitHub集成),显著提升智能体开发效率。

2025-11-05 23:28:45 1187

原创 08.大模型Function Call的应用

OpenAI于2023年6月推出的FunctionCall功能使GPT-4/3.5-turbo能通过JSON对象调用外部函数,解决了大模型的信息实时性、数据局限性和功能扩展性问题。文章详细介绍了FunctionCall的工作原理,通过查询天气、航班信息和SQL数据库三个实践案例,展示了如何定义函数、描述参数并实现交互。案例代码包括函数调用流程、参数传递及结果处理,证明FunctionCall能有效增强大模型与外部系统的集成能力,提升AI应用的实用性和灵活性。

2025-11-05 23:18:13 1147

原创 07.docker介绍与常用命令

Docker是一种轻量级容器技术,相比传统虚拟机具有启动快、资源占用小的优势。本文系统介绍了Docker的核心概念:镜像(只读模板)、容器(运行实例)及其相互关系,通过C/S架构提供服务。重点讲解了常用命令操作,包括镜像管理、容器运行、网络配置等。特别演示了使用Dockerfile构建镜像和Docker Compose编排多容器服务的完整流程,最后通过FastAPI应用部署案例实践了开发到上线的全流程。

2025-11-05 22:22:07 613

原创 06.LangChain的介绍和入门

LangChain是由Harrison Chase于2022年10月创建的LLM应用开发框架,旨在简化大语言模型的应用开发。它提供了统一的接口连接各类大模型(如GPT、文心一言等),并包含六大核心组件:模型集成、提示管理、记忆功能、索引处理、链式调用和智能代理。框架支持Python和Node.js实现,能实现文档问答、聊天机器人等多种应用场景。通过组件组合,开发者可以快速构建复杂AI应用,如基于文档的问答系统和个人助手等,显著降低了LLM应用开发门槛。

2025-11-05 11:53:43 1087

原创 05.大模型提示工程指南

提示工程(Prompt Engineering)是与大语言模型交互的关键技术,通过优化指令设计提升模型输出质量。文章提出五大核心原则:1)提供清晰指令(详细描述、角色扮演、分隔符使用等技巧);2)基于参考文本作答减少幻觉;3)复杂任务拆解为子任务(意图识别、长文本处理);4)给予模型思考时间(链式推理);5)借助外部工具(动态知识库、代码执行)。这些方法能显著提升模型在专业领域、复杂计算和实时信息处理等方面的表现,是使用大语言模型的重要技能。

2025-11-05 11:40:44 759

原创 04.LLM主流开源代表模型

本文系统梳理了当前主流开源大语言模型的发展现状与技术特点,涵盖LLaMA、ChatGLM、Qwen、零一万物、DeepSeek等八大系列。从模型架构、训练策略、性能参数到开源协议进行全面分析,重点对比了不同参数规模(7B-304B)的硬件需求与适用场景。其中,Meta的LLaMA系列通过RoPE位置编码和SwiGLU激活函数实现技术突破;清华ChatGLM采用独特的自回归填空目标;阿里Qwen实现百万token长文本处理;DeepSeek运用MoE架构优化推理效率。

2025-11-04 21:49:32 1057

原创 03.ChatGPT模型原理介绍

ChatGPT是OpenAI研发的AI聊天机器人,基于GPT-3.5模型构建。它通过监督学习和强化学习(RLHF)两个阶段训练:先用人工标注数据微调语言模型(SFT),再通过人类反馈训练奖励模型(RM)指导优化。这种"预训练+人类反馈强化学习"的方法使ChatGPT能生成更符合人类期望的响应。相比前代模型,ChatGPT在1750亿参数规模下,通过few-shot学习实现多任务处理,支持代码生成、翻译等复杂任务。

2025-11-04 12:45:24 1502

原创 02.LLM主要类别架构

本文系统梳理了大型语言模型(LLM)的三种主要架构类型。自编码模型(如BERT)采用双向Transformer编码器,擅长语言理解任务,但存在预训练-微调差异问题。自回归模型(如GPT)基于单向Transformer解码器,专长生成任务,但无法捕获双向上下文。序列到序列模型(如T5)整合编码器和解码器,通过文本转换框架统一处理各类NLP任务。当前主流趋势是采用Decoder-only架构,因其在参数量效比和训练效率上具有综合优势。

2025-11-04 00:38:06 798

原创 01.LLM的背景知识

大语言模型(LLM)是参数量超过10亿的人工智能模型,能够处理文本生成、翻译等自然语言任务。语言模型发展经历了四个阶段:基于统计的N-gram模型、神经网络语言模型、基于Transformer的预训练模型(如BERT、GPT)和当前的大语言模型(如GPT-3、ChatGPT)。大模型展现了Few-shot学习、上下文理解等新能力,但也面临算力需求大、内容偏见等问题。评估指标如BLEU分数用于衡量生成文本质量,通过比较候选文本与参考文本的n-gram匹配度计算得分。

2025-10-27 20:47:46 745

原创 Transformer精选问答

本文系统介绍了Transformer架构的核心模块及工作原理。重点剖析了Encoder和Decoder的结构差异,包括自注意力机制、前馈网络和Add & Norm层的设计原理。详细解释了self-attention和multi-head attention的计算机制及其优势,以及位置编码的特殊处理方式。同时对比了Transformer相对于RNN/LSTM和seq2seq模型的改进之处,特别是并行计算能力和长距离依赖特征提取的优势

2025-10-20 23:18:57 910

原创 BERT系列模型

BERT是由Google提出的一种基于Transformer Encoder的双向预训练语言模型。文章首先介绍了BERT的架构,包括Embedding模块、双向Transformer模块和预微调模块;其次详细说明了BERT的两个预训练任务:Masked LM(采用15%的token进行随机遮掩训练)和Next Sentence Prediction(句子关系预测);然后分析了BERT的优缺点,其优势在于强大的特征提取能力,缺点在于模型庞大、收敛慢;最后简要介绍了BERT的改进模型AlBERT。文章系统阐述了

2025-10-20 20:01:53 887

原创 迁移学习( TransferLearning)

本文介绍了迁移学习的概念及其在NLP领域的应用。迁移学习包括预训练模型和微调两种方式,预训练模型可分为Encoder-Only、Decoder-Only和Encoder-Decoder三类。文章列举了当前流行的NLP预训练模型,重点介绍了BERT及其变体。同时阐述了Transformers库的三层应用结构:管道方式、自动模型方式和具体模型方式,并通过代码示例展示了文本分类、特征抽取、完形填空等任务的实现方法。这些内容为NLP领域的迁移学习应用提供了实用指导。

2025-10-15 22:58:06 1090

原创 Transformer模型

Transformer模型是2018年由Google团队提出的革命性架构,在BERT等模型中发挥核心作用。其核心优势在于并行计算能力和强大的特征提取性能。模型主要由输入部分(词嵌入+位置编码)、编码器(多头自注意力机制+前馈网络)、解码器三部分组成。输入部分通过词嵌入和三角函数位置编码实现文本表示;编码器采用多层结构,每层包含自注意力机制和规范化处理;解码器结构与编码器类似但增加跨注意力层。该架构通过残差连接和规范化处理保证训练稳定性,成为NLP领域的重要基石。

2025-10-14 19:11:01 683

原创 RNN及其变体

本文介绍了RNN及其变体模型在自然语言处理中的应用。首先概述了RNN的定义、应用场景和常见分类方式(按输入输出结构和内部结构划分)。随后详细解析了传统RNN、LSTM和GRU的内部结构及实现代码,重点说明了LSTM的遗忘门、输入门、细胞状态和输出门机制,以及GRU的更新门和重置门机制。文中还介绍了双向模型(BI-LSTM和BI-GRU)的工作原理。最后以人名分类任务为例,展示了RNN模型实际应用的工作流程,包括数据获取、预处理、特征提取、模型构建、训练评估等步骤。

2025-10-13 09:53:26 780

原创 NLP入门

本文介绍了自然语言处理(NLP)的基础知识和文本预处理方法。首先概述了NLP的发展历程,从1950年代的规则方法到现代的大模型时代。随后重点讲解了文本预处理的关键环节:1) 基本处理方法包括分词、命名实体识别和词性标注;2) 文本张量表示方法,详细介绍了One-Hot编码和Word2Vec模型(CBOW和Skipgram两种训练方式)。文章还提供了各种技术的Python实现代码示例,如jieba分词工具的使用和One-Hot编码的实现。这些基础知识为后续深入NLP领域的学习奠定了基础。

2025-10-12 12:03:48 839

原创 深度学习之循环神经网络RNN

文章摘要: 循环神经网络(RNN)是一种专门处理序列数据的神经网络,通过循环结构能够记忆历史信息,适用于时间序列和自然语言处理任务。RNN在文本生成、语音识别、时间序列预测等领域有广泛应用。词嵌入层是RNN处理文本的关键,将离散单词转换为连续向量表示(如使用PyTorch的nn.Embedding),捕捉语义关系并降低维度。RNN通过循环结构处理序列数据,保持文本的顺序特性,解决传统神经网络无法处理的序列依赖问题。

2025-10-10 15:01:10 1245

原创 深度学习之卷积神经网络CNN

本文介绍了图像处理的基础知识和卷积神经网络(CNN)的核心概念。首先阐述了图像的基本类型:二值图像、灰度图像、索引图像和RGB图像,分析了各自的特点和适用场景。随后详细讲解了CNN的结构原理,包括卷积层、池化层和全连接层的功能,以及其在图像分类、目标检测等领域的应用。文章还通过代码示例演示了使用matplotlib加载和处理图像的方法,并介绍了LeNet-5、AlexNet和VGGNet等经典CNN网络架构的特点和贡献,为理解计算机视觉领域的深度学习技术提供了基础指导。

2025-10-09 19:07:56 1082

原创 深度学习之神经网络2(Neural Network)

本文介绍了神经网络的核心优化方法。多层神经网络通过误差反向传播算法(BP)进行训练,BP算法利用链式法则计算梯度并更新权重。梯度下降法通过沿负梯度方向调整参数最小化损失函数,其变体包括批量、随机和Mini-Batch梯度下降。反向传播过程分为前向计算输出和反向传播误差两个阶段,文中通过具体示例详细解释了权值更新过程。针对梯度下降的局限性(如鞍点、局部最优),介绍了Momentum、AdaGrad等优化算法。最后讲解了指数加权平均的概念及其在平滑数据中的应用。

2025-10-07 21:25:18 2247 2

原创 深度学习之神经网络1(Neural Network)

神经网络是一种模仿生物神经网络的机器学习模型,由输入层、隐藏层和输出层组成。前向传播过程中,数据通过各层神经元进行加权计算和激活函数变换,最终产生预测结果。激活函数(如Sigmoid、Tanh等)为网络引入非线性因素,使其能拟合复杂函数。合理设置神经元权重和激活函数对网络性能至关重要。全连接神经网络中,相邻层神经元两两相连,每个连接都有权重参数。网络通过调整这些参数来学习数据特征,实现分类或回归任务。

2025-10-07 20:24:27 1420

原创 深度学习之PyTorch框架的使用

PyTorch是一个基于Python的深度学习框架,提供灵活高效的张量计算和自动微分功能。文章介绍了PyTorch的特点(如动态计算图、GPU加速)、发展历史,以及张量的创建方式(包括基本创建、随机生成和特殊值张量)。PyTorch因其直观的API设计和强大的功能,在学术界和工业界广泛应用。

2025-10-06 16:31:04 1124

原创 深度学习简介(Deep Learning)

深度学习(Deep Learning)是机器学习的分支,是一种以人工神经网络为架构对数据进行特征学习的算法。深度学习中的形容词“深度”是指在网络中使用多层。深度学习核心思想是通过模仿人脑的神经网络来处理和分析复杂的数据,从大量数据中自动提取复杂特征,擅长处理高维数据,如图像、语音和文本。

2025-10-06 00:23:23 1656

原创 聚类之KMeans

本文介绍了KMeans聚类算法的基本原理、应用场景和实现方法。主要内容包括: 聚类算法简介:解释了聚类作为无监督学习的特点,以及常见的应用场景(如用户画像、广告推荐等)。 Kmeans算法实践:通过Python代码演示了使用sklearn.cluster.KMeans进行聚类的完整流程,包括数据生成、模型训练和结果可视化。 算法流程解析:详细说明了Kmeans算法的4个核心步骤,并配以动态效果图展示聚类过程。 评价指标:介绍了SSE、SC系数、肘部法和CH系数4种评估聚类效果的方法及其数学原理。

2025-10-05 17:25:40 1680

原创 集成学习(Ensemble Learning)

集成学习是一种通过组合多个弱学习器来提高预测性能的机器学习方法,主要包括bagging和boosting两类。bagging通过有放回抽样生成多个训练集,训练独立模型后平权投票;boosting则逐步调整样本权重,加权投票提升模型性能。随机森林是基于bagging的典型算法,通过构建多棵决策树并投票输出结果,具有抗过拟合和泛化能力强的特点。文中以泰坦尼克号生存预测为例,展示了随机森林的实际应用,包括数据预处理、模型构建与评估等步骤。

2025-09-28 12:33:09 1720

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除