[De1CTF2019]babyrsa writeup

总述

对于学习RSA来说,这道题无疑是很好的教材,这道题集合了许多常考的RSA的出题点,前三步解密较为简单,但是第四步有一定难度,要想做出来得费不少功夫。总而言之是一道很不错的Crypto题。

题解

第一步

最上面一层给了4组n和c,中国剩余定理估计是八九不离十了,而且这里用的lambda函数希望对python不熟悉的可以去查一下了解一下,算是一个很方便的小函数创建,也经常在Crypto的py脚本中出现。

中国剩余定理的python脚本如下:

import gmpy2
import math
def  merge(a1,n1,a2,n2):
    d = math.gcd(n1,n2)
    c = a2-a1
    if c%d!=0:
        return 0
    c = (c%n2+n2)%n2
    c = c//d
    n1 = n1//d
    n2 = n2//d
    c *= gmpy2.invert(n1,n2)
    c %= n2
    c *= n1*d
    c += a1
    global n3
    global a3
    n3 = n1*n2*d
    a3 = (c%n3+n3)%n3
    return 1
def exCRT(a,n):
    a1=a[0]
    n1=n[0]
    le= len(a)
    for i in range(1,le):
        a2 = a[i]
        n2=n[i]
        if not merge(a1,n1,a2,n2):
            return -1
        a1 = a3
        n1 = n3
    global mod
    mod=n1
    return (a1%n1+n1)%n1
def exCRT_getequation(a,n):
    a1=a[0]
    n1=n[0]
    le= len(a)
    for i in range(1,le):
        a2 = a[i]
        n2=n[i]
        if not merge(a1,n1,a2,n2):
            return -1
        a1 = a3
        n1 = n3
    return (a1,n1)
#a为余数列表
#n为模数列表
n =  [20129615352491765499340112943188317180548761597861300847305827141510465619670536844634558246439230371658836928103063432870245707180355907194284861510906071265352409579441048101084995923962148527097370705452070577098780246282820065573711015664291991372085157016901209114191068574208680397710042842835940428451949500607613634682684113208766694028789275748528254287705759528498986306494267817198340658241873024800336013946294891687591013414935237821291805123285905335762719823771647853378892868896078424572232934360940672962436849523915563328779942134504499568866135266628078485232098208237036724121481835035731201383423, 31221650155627849964466413749414700613823841060149524451234901677160009099014018926581094879840097248543411980533066831976617023676225625067854003317018794041723612556008471579060428898117790587991055681380408263382761841625714415879087478072771968160384909919958010983669368360788505288855946124159513118847747998656422521414980295212646675850690937883764000571667574381419144372824211798018586804674824564606122592483286575800685232128273820087791811663878057827386379787882962763290066072231248814920468264741654086011072638211075445447843691049847262485759393290853117072868406861840793895816215956869523289231421, 29944537515397953361520922774124192605524711306753835303703478890414163510777460559798334313021216389356251874917792007638299225821018849648520673813786772452822809546571129816310207232883239771324122884804993418958309460009406342872173189008449237959577469114158991202433476710581356243815713762802478454390273808377430685157110095496727966308001254107517967559384019734279861840997239176254236069001453544559786063915970071130087811123912044312219535513880663913831358790376650439083660611831156205113873793106880255882114422025746986403355066996567909581710647746463994280444700922867397754748628425967488232530303, 25703437855600135215185778453583925446912731661604054184163883272265503323016295700357253105301146726667897497435532579974951478354570415554221401778536104737296154316056314039449116386494323668483749833147800557403368489542273169489080222009368903993658498263905567516798684211462607069796613434661148186901892016282065916190920443378756167250809872483501712225782004396969996983057423942607174314132598421269169722518224478248836881076484639837343079324636997145199835034833367743079935361276149990997875905313642775214486046381368619638551892292787783137622261433528915269333426768947358552919740901860982679180791]
c =  [19131432661217908470262338421299691998526157790583544156741981238822158563988520225986915234570037383888112724408392918113942721994125505014727545946133307329781747600302829588248042922635714391033431930411180545085316438084317927348705241927570432757892985091396044950085462429575440060652967253845041398399648442340042970814415571904057667028157512971079384601724816308078631844480110201787343583073815186771790477712040051157180318804422120472007636722063989315320863580631330647116993819777750684150950416298085261478841177681677867236865666207391847046483954029213495373613490690687473081930148461830425717614569, 15341898433226638235160072029875733826956799982958107910250055958334922460202554924743144122170018355117452459472017133614642242411479849369061482860570279863692425621526056862808425135267608544855833358314071200687340442512856575278712986641573012456729402660597339609443771145347181268285050728925993518704899005416187250003304581230701444705157412790787027926810710998646191467130550713600765898234392350153965811595060656753711278308005193370936296124790772689433773414703645703910742193898471800081321469055211709339846392500706523670145259024267858368216902176489814789679472227343363035428541915118378163012031, 18715065071648040017967211297231106538139985087685358555650567057715550586464814763683688299037897182845007578571401359061213777645114414642903077003568155508465819628553747173244235936586812445440095450755154357646737087071605811984163416590278352605433362327949048243722556262979909488202442530307505819371594747936223835233586945423522256938701002370646382097846105014981763307729234675737702252155130837154876831885888669150418885088089324534892506199724486783446267336789872782137895552509353583305880144947714110009893134162185382309992604435664777436197587312317224862723813510974493087450281755452428746194446, 2282284561224858293138480447463319262474918847630148770112472703128549032592187797289965592615199709857879008271766433462032328498580340968871260189669707518557157836592424973257334362931639831072584824103123486522582531666152363874396482744561758133655406410364442174983227005501860927820871260711861008830120617056883514525798709601744088135999465598338635794275123149165498933580159945032363880613524921913023341209439657145962332213468573402863796920571812418200814817086234262280338221161622789516829363805084715652121739036183264026120868756523770196284142271849879003202190966150390061195469351716819539183797]
p_4=exCRT(c,n)
p=gmpy2.iroot(p_4,4)[0]
print(p)

注意中国剩余定理直接算出来的结果其实是p的4次方,请使用gmpy2.iroot()函数进行4次开方

第二步

首先要对ee2=3非常敏感,低加密指数一般是个突破口,再观察tmp和n的相对大小,发现tmp的3次方与n大小相当

已知

k*n+ce2=(e2+tmp)**3

那么就可以爆破k的大小来获取e2

脚本如下:

import gmpy2
# gcd(e1,e2)=1
# 存在整数r,s使得re1 + se2 = 1(贝祖定理)
ee1 = 42
ee2 = 3
ce1 =  45722651786340123946960815003059322528810481841378247280642868553607692149509126962872583037142461398806689489141741494974836882341505234255325683219092163052843461632338442529011502378931140356111756932712822516814023166068902569458299933391973504078898958921809723346229893913662577294963528318424676803942288386430172430880307619748186863890050113934573820505570928109017842647598266634344447182347849367714564686341871007505886728393751147033556889217604647355628557502208364412269944908011305064122941446516990168924709684092200183860653173856272384
ce2 =  13908468332333567158469136439932325992349696889129103935400760239319454409539725389747059213835238373047899198211128689374049729578146875309231962936554403287882999967840346216695208424582739777034261079550395918048421086843927009452479936045850799096750074359160775182238980989229190157551197830879877097703347301072427149474991803868325769967332356950863518504965486565464059770451458557744949735282131727956056279292800694203866167270268988437389945703117070604488999247750139568614939965885211276821987586882908159585863514561191905040244967655444219603287214405014887994238259270716355378069726760953320025828158
tmp =  864078778078609835167779565982540757684070450697854309005171742813414963447462554999012718960925081621571487444725528982424037419052194840720949809891134854871222612682162490991065015935449289960707882463387
n  =  15911581555796798614711625288508309704791837516232122410440958830726078821069050404012820896260071751380436992710638364294658173571101596931605797509712839622479368850251206419748090059752427303611760004621378226431226983665746837779056271530181865648115862947527212787824629516204832313026456390047768174765687040950636530480549014401279054346098030395100387004111574278813749630986724706263655166289586230453975953773791945408589484679371854113457758157492241225180907090235116325034822993748409011554673180494306003272836905082473475046277554085737627846557240367696214081276345071055578169299060706794192776825039
# assert(pow(e1,ee1,n)==ce1)
# assert(pow(e2+tmp,ee2,n)==ce2)
# c1 = m**e1 mod n
# c2 = m**e2 mod n
# (c1**r*c2**s) mod n = (m**(re1+se2)) mod n =m
# re1 + se2 = 1
for k in range(40000,45000):
    if(gmpy2.iroot(k*n+ce2,3)[0]==int(gmpy2.iroot(k*n+ce2,3)[0])):
        print(gmpy2.iroot(k*n+ce2,3)[0]-tmp)

根据经验来说e2一般不是一个太大的数,输出有很多,从正到负都有,我们想要的就是输出刚刚从负变正的时候对应的e2

就像这样:

易得

e2=381791429275130

随后是解e1:

仔细观察可以发现ce1的值与n的值相差了数十个数量级,从概率统计的意义上讲,如果比n小的每个数作为结果的可能相同,那么这种事情发生的概率非常小,但是还有一种可能就是,由于e1很小,e1的42次方都比n小,从而导致模n没起效果。

我们试着给ce1开42次方,果然直接得到一个差不多的整数,证实了猜想。

e1=15218928658178

第三步

只给了e,n,c,这样一般是没办法直接得到明文的,这种情况下只能看看有没有历史分解记录,或者是暴力分解行不行

历史分解记录:

yafu暴力分解:

两个质因数差距非常小,所以能够快速解出来。

那么此题的hint也就轻松得到了

hint:

额,挺。。可爱的。。

第四步:

前面三关其实都好过,但是这第四关是真的鬼门关,搞了半天最后还是只能依靠其他师傅的wp,不过总算是整明白了,以人话跟大家大概说说是怎么回事吧。

先上代码,大家对着代码看解释:

import gmpy2
from Crypto.Util.number import *
q1=   127587319253436643569312142058559706815497211661083866592534217079310497260365307426095661281103710042392775453866174657404985539066741684196020137840472950102380232067786400322600902938984916355631714439668326671310160916766472897536055371474076089779472372913037040153356437528808922911484049460342088834871
q2 =  114401188227479584680884046151299704656920536168767132916589182357583461053336386996123783294932566567773695426689447410311969456458574731187512974868297092638677515283584994416382872450167046416573472658841627690987228528798356894803559278308702635288537653192098514966089168123710854679638671424978221959513
c1 =  262739975753930281690942784321252339035906196846340713237510382364557685379543498765074448825799342194332681181129770046075018122033421983227887719610112028230603166527303021036386350781414447347150383783816869784006598225583375458609586450854602862569022571672049158809874763812834044257419199631217527367046624888837755311215081173386523806086783266198390289097231168172692326653657393522561741947951887577156666663584249108899327053951891486355179939770150550995812478327735917006194574412518819299303783243886962455399783601229227718787081785391010424030509937403600351414176138124705168002288620664809270046124
c2 =  7395591129228876649030819616685821899204832684995757724924450812977470787822266387122334722132760470911599176362617225218345404468270014548817267727669872896838106451520392806497466576907063295603746660003188440170919490157250829308173310715318925771643105064882620746171266499859049038016902162599261409050907140823352990750298239508355767238575709803167676810456559665476121149766947851911064706646506705397091626648713684511780456955453552020460909638016134124590438425738826828694773960514221910109473941451471431637903182205738738109429736425025621308300895473186381826756650667842656050416299166317372707709596
e1=15218928658178
e2=381791429275130
p=109935857933867829728985398563235455481120300859311421762540858762721955038310117609456763338082237907005937380873151279351831600225270995344096532750271070807051984097524900957809427861441436796934012393707770012556604479065826879107677002380580866325868240270494148512743861326447181476633546419262340100453
n =  [ q1, q2]
a=gmpy2.gcd(e1,(p-1)*(q1-1))
b=gmpy2.gcd(e2,(p-1)*(q2-1))
#a,b相同
c =  [ gmpy2.powmod(c1,gmpy2.invert(e1//a,(p-1)*(q1-1)),q1), gmpy2.powmod(c2,gmpy2.invert(e2//b,(p-1)*(q2-1)),q2)]
M=n[0]*n[1]
m=[0]*2
t=[0]*2
x=0
for i in range(2):
    m[i]=M//n[i]
    t[i]=gmpy2.invert(m[i],n[i])#t[i]是m[i]的模n[i]逆元
    x+=(c[i]*t[i]*m[i])
x=x%M
print(x)
#x=3580483299432395573659317753435578327637985357646700589244795353763573715336139257763207735764180027583647775608064149038853113096146443168864525876633843358404759038299549652788731401504933571857458579919657482494694530749880548630064266049810247928643334919438340898675734894238176854701817798193943787788697804563837637936347825096631189269242445925193015122262187618001159858028229304823201669018674562259904808285226405200475644934113919993329694127412750568776255266590650092290392749263011086241948791335363230476476351250684647853369997799237573793567577022116859682785257602832495614664192557787307332769009
e=7
d=gmpy2.invert(e,(q1-1)*(q2-1))
flag=gmpy2.iroot(gmpy2.powmod(x,d,q1*q2),2)[0]
print(long_to_bytes(flag))

本来这个问题p,q1,q2,e1,e2都知道,解flag出来是分分钟的事,不过一旦e1,e2和phi1和phi2不互质了问题就复杂起来了,因为这样就没法正常地求私钥d了。

一般来说遇到这种情况都是让e除去其与欧拉函数的最大公约数,让这两个数重新互质,然后求m**gcd(e,phi)的值。

这个问题碰巧a=b=14,那么最后就求出来了m**14相关的两个式子,这个幂次还是有点高,不好处理。

这里就有很巧妙的一招可以把复杂度降下来:

两个式子其实可以用中国剩余定理求m**14,为了使求出来的数尽可能小我们采用:

m14 ☰a1 mod p
m14 ☰ a1 mod q1
m14 ☰ a2 mod p
m 14 ☰ a2 mod q2

然后用求出来的(m**2)**7%(q1*q2)组成一个新的RSA解密,e=7,n=q1*q2

但是用这个实际操作的时候就发现

gcd((p-1),7)!=0

那么可以直接用第二和第四两个式子求出x(m**2)

随后常规RSA解密后开方,即可得到flag

FLAG:de1ctf{9b10a98b-71bb-4bdf-a6ff-f319943de21f}

 

 

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值