二叉排序树

二叉排序树(binary sort tree)又称二叉搜索树(binary search tree),或者是一棵空树,或者是具有下列性质的二叉树:

1.若它的左子树不为空,则左子树上所有结点的值均小于它的根结点的值。

2.若它的右子树不为空,则右子树上所有结点的值均大于它的根结点的值。

3.它的左子树和右子树也分别为二叉排序树。

性能分析:

    
每个结点的C(i)为该结点的层次数。最坏情况下,当先后插入的关键字有序时,构成的二叉排序树蜕变为单支树,树的深度为其平均查找长度为(n+1)/2(和顺序查找相同),最好的情况是二叉排序树的形态和折半查找的判定树相同,其平均查找长度和log 2 (n)成正比
优化:
Size Balanced Tree(SBT),AVL树,红黑树,Treap(Tree+Heap),这些均可以使查找树的高度为O(log(n))。

 

#include <iostream>
#include <cstdio>
using namespace std;

typedef struct Node
{
	Node* left;
	Node* right;
	int data;
	Node(int dat)
	{
		left = right = NULL;
		data = dat;
	}
}*pNode, Node;

//插入结点 
pNode Insert(int data, pNode p)
{
	if (p==NULL)
	{
		p = new Node(data);
	}
	else if (data < p->data)
	{
		p->left = Insert(data, p->left);
	}
	else
	{
		p->right = Insert(data, p->right);
	}
	return p;
}
//删除结点 
pNode Delete(int data, pNode &p)
{
	if (p==NULL)
		return NULL;
	if (data==p->data)//找与data值相等结点
	{
		if (p->right==NULL)//如果右儿子不存在,则结点p等于其左二子 
		{
			pNode t = p;
			p = p->left;
			free(t);	
		}
		else //右儿子存在,则找到右儿子的左儿子左儿子。。。(即大于等于data的最小值) 
		{
			pNode head = p->right;
			while (head->left) 
				head = head->left;
			//cout << p->data << endl;
			p->data = head->data;
			//cout << p->data << endl;
			Delete(p->data, p->right);
		}
	}
	else if (data < p->data)
	{
		Delete(data, p->left);
	}
	else if (data > p->data)
	{
		Delete(data, p->right);
	}
}
//遍历 
void BianLi(pNode p)
{
	if (p==NULL)
		return ;
	BianLi(p->left);
	printf("%d ", p->data);
	BianLi(p->right);
}

int main()
{
	
	int a[11] = {5,5,2,8,9,6,3,10,4,7,1};
	int n = 11;
	pNode root = new Node(a[0]);
	for (int i=1; i<n; ++i)
		root = Insert(a[i], root);
	BianLi(root);
	printf("\n");
	Delete(9, root);
	Delete(5, root);
	Delete(5, root);
	BianLi(root);
	printf("\n");
	
	//system("pause");
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值