各种进制之间的互转
其他进制转十进制
按权展开!
十进制本身的按权展开:
(1234.56)10 = 1*103 + 2*102 + 3*101 + 4*100 + 5*10-1 + 6*10-2
其他进制的按权展开:
(1101.11)2 = 1*23 + 1*22 + 0*21 + 1*20 + 1*2-1 + 1*2-2 = (13.75)10
(1234.56)8 = 1*83 + 2*82 + 3*81 + 4*80 + 5*8-1 + 6*8-2
十进制转二进制
整数部分
除二取余法:
(67)10 = (1000011)2
填充法(填”1”法):
小数部分
乘2取整法:
十进制转其他进制
十转八:整数部分除8取余,小数部分乘8取整
十转十六:整数部分除16取余,小数部分乘16取整
二、八、十六进制之间的互转
数数 | 八进制 | 二进制 |
0 | 0 | 000 |
1 | 1 | 001 |
2 | 2 | 010 |
3 | 3 | 011 |
4 | 4 | 100 |
5 | 5 | 101 |
6 | 6 | 110 |
7 | 7 | 111 |
8 | 10 | 1000 |
八转二:一拆三
二转八:三并一
数数 | 十六进制 | 二进制 |
0 | 0 | 0000 |
1 | 1 | 0001 |
2 | 2 | 0010 |
3 | 3 | 0011 |
4 | 4 | 0100 |
5 | 5 | 0101 |
6 | 6 | 0110 |
7 | 7 | 0111 |
8 | 8 | 1000 |
9 | 9 | 1001 |
10 | A | 1010 |
11 | B | 1011 |
12 | C | 1100 |
13 | D | 1101 |
14 | E | 1110 |
15 | F | 1111 |
十六转二:一拆四
二转十六:四并一
八转十六:先一拆三,再四并一
十六转八:先一拆四,再三并一