PHP学习-进制的转换技巧

各种进制之间的互转

其他进制转十进制

按权展开!

十进制本身的按权展开:

(1234.56)10 = 1*103 + 2*102 + 3*101 + 4*100 + 5*10-1 + 6*10-2

其他进制的按权展开:

(1101.11)2 = 1*23 + 1*22 + 0*21 + 1*20 + 1*2-1 + 1*2-2 = (13.75)10

(1234.56)8 = 1*83 + 2*82 + 3*81 + 4*80 + 5*8-1 + 6*8-2

十进制转二进制

整数部分

除二取余法:

 

(67)10 = (1000011)2

填充法(填1法):

 

 

小数部分

2取整法:

 

十进制转其他进制

十转八:整数部分除8取余,小数部分乘8取整

十转十六:整数部分除16取余,小数部分乘16取整

 

二、八、十六进制之间的互转

数数

八进制

二进制

0

0

000

1

1

001

2

2

010

3

3

011

4

4

100

5

5

101

6

6

110

7

7

111

8

10

1000

 

八转二:一拆三

二转八:三并一

 

 

 

 

 

 

数数

十六进制

二进制

0

0

0000

1

1

0001

2

2

0010

3

3

0011

4

4

0100

5

5

0101

6

6

0110

7

7

0111

8

8

1000

9

9

1001

10

A

1010

11

B

1011

12

C

1100

13

D

1101

14

E

1110

15

F

1111

十六转二一拆四

二转十六四并一

八转十六:先一拆三,再四并一

十六转八:先一拆四,再三并一

 

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接重及阈值,仅需计算输出重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值