听说正解是高斯消元呐,但是我不会~(>_<)~
看到大家都写了搜索。
一种实现很简单的方法是枚举1~n的排列,判断是否可行。我算了算时间复杂度(其实我不会算,就大概估计了一下),发现会超时。
由于不会算复杂度,我对于这样的暴搜能过50表示惊讶⊙ o ⊙
如果按照竖式从右至左的顺序搜,就可以边搜边判断是否可行了。
我写得很麻烦,讨论了很多情况,但是很多复制粘贴就可以了。
具体的:
用v[i]记录i所代表的值,use[i]记录是否有字母代表i这个数字。
搜索的时候,传入的参数有:当前到了哪一位,上一位是否进位。
然后搜到某一位的时候,判断哪些数被确定了,我分了0个,1个,2个,3个的情况,分别处理
(如果有多个没有确定,也只能枚举一个,然后进入下一个搜索,因为可能会出现,加数与加数或和的这一位是同一个字母的情况)
有一个剪枝是,搜到第i位的时候,判断一下第i位到第n位,有没有出现冲突的情况(冲突,即三个数都确定了,但是相加什么的并不符合条件)
还有比较神奇的优化,比如枚举的时候倒着枚举。
注意进位什么的。
经过和zcx的讨论后,我终于知道自己代码为什么这么长了。
学习了正常的方法。
搜索的时候,如果当前列有两个数不确定,就跳过这一列(就不用那么多分类讨论了)。
#include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> using namespace std; int n,a[31],b[31],c[31],v[31]; int use[31]; inline int read() { register int ans=0,f=1;char ch=getchar(); while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();} while(isdigit(ch)) {ans=ans*10+ch-'0';ch=getchar();} return ans*f; } int buf[5]; inline void write(int x) { if (x<0) putchar('-'),x=-x; buf[0]=0; while (x) buf[++buf[0]]=x%10,x/=10; if (!buf[0]) buf[0]=1,buf[1]=0; while (buf[0]) putchar('0'+buf[buf[0]--]); } bool flag=0; inline void init() { for(register int j=1;j<=n;++j) { a[n-j+1]=getchar(); while(a[n-j+1]<'A'||a[n-j+1]>'A'+n-1) a[n-j+1]=getchar(); a[n-j+1]-='A'; } for(register int j=1;j<=n;++j) { b[n-j+1]=getchar(); while(b[n-j+1]<'A'||b[n-j+1]>'A'+n-1) b[n-j+1]=getchar(); b[n-j+1]-='A'; } for(register int j=1;j<=n;++j) { c[n-j+1]=getchar(); while(c[n-j+1]<'A'||c[n-j+1]>'A'+n-1) c[n-j+1]=getchar(); c[n-j+1]-='A'; } } void dfs(int now,int in) //当前到哪一位,进位 { int o; if(now==n+1) { flag=1; return; } for(int i=now;i<=n;i++) if(v[a[i]]>-1&&v[b[i]]>-1&&v[c[i]]>-1) { if((v[a[i]]+v[b[i]])%n==v[c[i]]||(v[a[i]]+v[b[i]]+1)%n==v[c[i]]) continue; else return; } if(v[a[now]]>-1&&v[b[now]]>-1&&v[c[now]]>-1) { if(v[a[now]]+v[b[now]]+in==v[c[now]]||(now!=n&&(v[a[now]]+v[b[now]]+in)%n==v[c[now]])) { dfs(now+1,(v[a[now]]+v[b[now]]+in)/n); if(flag) return; } else return; } if(v[a[now]]>-1&&v[b[now]]>-1&&v[c[now]]==-1) { if((v[a[now]]+v[b[now]]+in<n||now!=n)&&!use[(v[a[now]]+v[b[now]]+in)%n]) { v[c[now]]=(v[a[now]]+v[b[now]]+in)%n; use[v[c[now]]]=1; dfs(now+1,(v[a[now]]+v[b[now]]+in)/n); if(flag) return; use[v[c[now]]]=0; v[c[now]]=-1; } else return; } if(v[a[now]]>-1&&v[b[now]]==-1&&v[c[now]]>-1) { if((v[c[now]]>v[a[now]]+in||now!=n)&&!use[(v[c[now]]-v[a[now]]-in+n)%n]) { v[b[now]]=(v[c[now]]-v[a[now]]-in+n)%n; use[v[b[now]]]=1; dfs(now+1,(v[a[now]]+v[b[now]]+in)/n); if(flag) return; use[v[b[now]]]=0; v[b[now]]=-1; } else return; } if(v[b[now]]>-1&&v[a[now]]==-1&&v[c[now]]>-1) { if(v[c[now]]>v[b[now]]+in||now!=n) { v[a[now]]=(v[c[now]]-v[b[now]]-in+n)%n; use[v[a[now]]]=1; dfs(now+1,(v[b[now]]+v[a[now]]+in)/n); if(flag) return; use[v[a[now]]]=0; v[a[now]]=-1; } else return; } if(v[a[now]]>-1&&v[b[now]]==-1&&v[c[now]]==-1) { o=n==now? n-v[a[now]]-in:n-in; for(register int i=o-1;i>=0;--i) if(!use[i]) { v[b[now]]=i;use[i]=1; dfs(now,in); if(flag) return; use[i]=0;v[b[now]]=-1; } } if(v[a[now]]==-1&&v[b[now]]>-1&&v[c[now]]==-1) { o=n==now? n-v[b[now]]-in:n-in; for(register int i=o-1;i>=0;--i) if(!use[i]) { v[a[now]]=i;use[i]=1; dfs(now,in); if(flag) return; use[i]=0;v[a[now]]=-1; } } if(v[a[now]]==-1&&v[b[now]]==-1&&v[c[now]]>-1) { o=n==now? v[c[now]]-in:n-1-in; for(register int i=o;i>=0;--i) if(!use[i]) { v[a[now]]=i;use[i]=1; dfs(now,in); if(flag) return; v[a[now]]=-1;use[i]=0; } } if(v[a[now]]==-1&&v[b[now]]==-1&&v[c[now]]==-1) { o=n==now? n-in:n; for(register int i=o-1;i>=0;--i) if(!use[i]) { v[a[now]]=i;use[i]=1; dfs(now,in); if(flag) return; v[a[now]]=-1;use[i]=0; } } } int main() { n=read(); init(); for(register int i=0;i<n;++i) { use[i]=0; v[i]=-1; } dfs(1,0); for(register int i=0;i<n;++i) { write(v[i]); putchar(' '); } return 0; }