图着色问题 (25 分)
图着色问题是一个著名的NP完全问题。给定无向图G=(V,E),问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色?
但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请你判断这是否是图着色问题的一个解。
输入格式:
输入在第一行给出3个整数V(0<V≤500)、E(≥0)和K(0<K≤V),分别是无向图的顶点数、边数、以及颜色数。顶点和颜色都从1到V编号。随后E行,每行给出一条边的两个端点的编号。在图的信息给出之后,给出了一个正整数N(≤20),是待检查的颜色分配方案的个数。随后N行,每行顺次给出V个顶点的颜色(第i个数字表示第i个顶点的颜色),数字间以空格分隔。题目保证给定的无向图是合法的(即不存在自回路和重边)。
输出格式:
对每种颜色分配方案,如果是图着色问题的一个解则输出Yes,否则输出No,每句占一行。
输入样例:
6 8 3
2 1
1 3
4 6
2 5
2 4
5 4
5 6
3 6
4
1 2 3 3 1 2
4 5 6 6 4 5
1 2 3 4 5 6
2 3 4 2 3 4
输出样例:
Yes
Yes
No
No
#include<bits/stdc++.h>
using namespace std;
int mp[550][550]={0};
int vp[550]={0};
int main()
{
int v,m,k;
cin>>v>>m>>k;
for(int i=0;i<m;i++)
{
int x,y;
cin>>x>>y;
mp[x][y]=mp[y][x]=1;
}
int n;
cin>>n;
int flag;
set<int>s;
while(n--)
{ s.clear();
for(int i=1;i<=v;i++)
{
cin>>vp[i];
s.insert(vp[i]);
}
if(s.size()!=k)
cout<<"No"<<endl;
else
{ flag=1;
for(int i=1;i<=v;i++)
{
for(int j=1;j<=v;j++)
{
if(mp[i][j])
{
if(vp[i]==vp[j])
flag=0;
}
}
}
if(flag)
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
}
}
return 0;
}