接上一篇文章:Autojs官方提取文档使用说明函数 (1)
Images
Stability: 2 - Stable
images模块提供了一些手机设备中常见的图片处理函数,包括截图、读写图片、图片剪裁、旋转、二值化、找色找图等。
该模块分为两个部分,找图找色部分和图片处理部分。
需要注意的是,image对象创建后尽量在不使用时进行回收,同时避免循环创建大量图片。因为图片是一种占用内存比较大的资源,尽管Auto.js通过各种方式(比如图片缓存机制、垃圾回收时回收图片、脚本结束时回收所有图片)尽量降低图片资源的泄漏和内存占用,但是糟糕的代码仍然可以占用大量内存。
Image对象通过调用recycle()函数来回收。例如:
// 读取图片
var img = images.read("./1.png");
//对图片进行操作
...
// 回收图片
img.recycle();
例外的是,caputerScreen()返回的图片不需要回收。
图片处理
images.read(path)
- path {string} 图片路径
读取在路径path的图片文件并返回一个Image对象。如果文件不存在或者文件无法解码则返回null。
images.load(url)
- url {string} 图片URL地址
加载在地址URL的网络图片并返回一个Image对象。如果地址不存在或者图片无法解码则返回null。
images.copy(img)
- img {Image} 图片
- 返回 {Image}
复制一张图片并返回新的副本。该函数会完全复制img对象的数据。
images.save(image, path[, format = "png", quality = 100])
- image {Image} 图片
- path {string} 路径
- format {string} 图片格式,可选的值为:
- png
- jpeg/jpg
- webp
- quality {number} 图片质量,为0~100的整数值
把图片image以PNG格式保存到path中。如果文件不存在会被创建;文件存在会被覆盖。
//把图片压缩为原来的一半质量并保存
var img = images.read("/sdcard/1.png");
images.save(img, "/sdcard/1.jpg", "jpg", 50);
app.viewFile("/sdcard/1.jpg");
images.fromBase64(base64)
- base64 {string} 图片的Base64数据
- 返回 {Image}
解码Base64数据并返回解码后的图片Image对象。如果base64无法解码则返回null。
images.toBase64(img[, format = "png", quality = 100])
- image {image} 图片
- format {string} 图片格式,可选的值为:
- png
- jpeg/jpg
- webp
- quality {number} 图片质量,为0~100的整数值
- 返回 {string}
把图片编码为base64数据并返回。
images.fromBytes(bytes)
- bytes {byte[]} 字节数组
解码字节数组bytes并返回解码后的图片Image对象。如果bytes无法解码则返回null。
images.toBytes(img[, format = "png", quality = 100])
- image {image} 图片
- format {string} 图片格式,可选的值为:
- png
- jpeg/jpg
- webp
- quality {number} 图片质量,为0~100的整数值
- 返回 {byte[]}
把图片编码为字节数组并返回。
images.clip(img, x, y, w, h)
- img {Image} 图片
- x {number} 剪切区域的左上角横坐标
- y {number} 剪切区域的左上角纵坐标
- w {number} 剪切区域的宽度
- h {number} 剪切区域的高度
- 返回 {Image}
从图片img的位置(x, y)处剪切大小为w * h的区域,并返回该剪切区域的新图片。
var src = images.read("/sdcard/1.png");
var clip = images.clip(src, 100, 100, 400, 400);
images.save(clip, "/sdcard/clip.png");
images.resize(img, size[, interpolation])
[v4.1.0新增]
- img {Image} 图片
- size {Array} 两个元素的数组[w, h],分别表示宽度和高度;如果只有一个元素,则宽度和高度相等
- interpolation {string} 插值方法,可选,默认为"LINEAR"(线性插值),可选的值有:
- NEAREST 最近邻插值
- LINEAR 线性插值(默认)
- AREA 区域插值
- CUBIC 三次样条插值
- LANCZOS4 Lanczos插值 参见InterpolationFlags
- 返回 {Image}
调整图片大小,并返回调整后的图片。例如把图片放缩为200*300:images.resize(img, [200, 300])。
参见Imgproc.resize。
images.scale(img, fx, fy[, interpolation])
[v4.1.0新增]
- img {Image} 图片
- fx {number} 宽度放缩倍数
- fy {number} 高度放缩倍数
- interpolation {string} 插值方法,可选,默认为"LINEAR"(线性插值),可选的值有:
- NEAREST 最近邻插值
- LINEAR 线性插值(默认)
- AREA 区域插值
- CUBIC 三次样条插值
- LANCZOS4 Lanczos插值 参见InterpolationFlags
- 返回 {Image}
放缩图片,并返回放缩后的图片。例如把图片变成原来的一半:images.scale(img, 0.5, 0.5)。
参见Imgproc.resize。
images.rotate(img, degress[, x, y])
[v4.1.0新增]
- img {Image} 图片
- degress {number} 旋转角度。
- x {number} 旋转中心x坐标,默认为图片中点
- y {number} 旋转中心y坐标,默认为图片中点
- 返回 {Image}
将图片逆时针旋转degress度,返回旋转后的图片对象。
例如逆时针旋转90度为images.rotate(img, 90)。
images.concat(img1, image2[, direction])
[v4.1.0新增]
- img1 {Image} 图片1
- img2 {Image} 图片2
- direction {string} 连接方向,默认为"RIGHT",可选的值有:
- LEFT 将图片2接到图片1左边
- RIGHT 将图片2接到图片1右边
- TOP 将图片2接到图片1上边
- BOTTOM 将图片2接到图片1下边
- 返回 {Image}
连接两张图片,并返回连接后的图像。如果两张图片大小不一致,小的那张将适当居中。
images.grayscale(img)
[v4.1.0新增]
- img {Image} 图片
- 返回 {Image}
灰度化图片,并返回灰度化后的图片。
image.threshold(img, threshold, maxVal[, type])
[v4.1.0新增]
- img {Image} 图片
- threshold {number} 阈值
- maxVal {number} 最大值
- type {string} 阈值化类型,默认为"BINARY",参见ThresholdTypes, 可选的值:
- BINARY
- BINARY_INV
- TRUNC
- TOZERO
- TOZERO_INV
- OTSU
- TRIANGLE
- 返回 {Image}
将图片阈值化,并返回处理后的图像。可以用这个函数进行图片二值化。例如:images.threshold(img, 100, 255, "BINARY"),这个代码将图片中大于100的值全部变成255,其余变成0,从而达到二值化的效果。如果img是一张灰度化图片,这个代码将会得到一张黑白图片。
可以参考有关博客(比如threshold函数的使用)或者OpenCV文档threshold。
images.adaptiveThreshold(img, maxValue, adaptiveMethod, thresholdType, blockSize, C)
[v4.1.0新增]
- img {Image} 图片
- maxValue {number} 最大值
- adaptiveMethod {string} 在一个邻域内计算阈值所采用的算法,可选的值有:
- MEAN_C 计算出领域的平均值再减去参数C的值
- GAUSSIAN_C 计算出领域的高斯均值再减去参数C的值
- thresholdType {string} 阈值化类型,可选的值有:
- BINARY
- BINARY_INV
- blockSize {number} 邻域块大小
- C {number} 偏移值调整量
- 返回 {Image}
对图片进行自适应阈值化处理,并返回处理后的图像。
可以参考有关博客(比如threshold与adaptiveThreshold)或者OpenCV文档adaptiveThreshold。
images.cvtColor(img, code[, dstCn])
[v4.1.0新增]
- img {Image} 图片
- code {string} 颜色空间转换的类型,可选的值有一共有205个(参见ColorConversionCodes),这里只列出几个:
- BGR2GRAY BGR转换为灰度
- BGR2HSV BGR转换为HSV
- ``
- dstCn {number} 目标图像的颜色通道数量,如果不填写则根据其他参数自动决定。
- 返回 {Image}
对图像进行颜色空间转换,并返回转换后的图像。
可以参考有关博客(比如颜色空间转换)或者OpenCV文档cvtColor。
images.inRange(img, lowerBound, upperBound)
[v4.1.0新增]
- img {Image} 图片
- lowerBound {string} | {number} 颜色下界
- upperBound {string} | {number} 颜色下界
- 返回 {Image}
将图片二值化,在lowerBound~upperBound范围以外的颜色都变成0,在范围以内的颜色都变成255。
例如images.inRange(img, "#000000", "#222222")。
images.interval(img, color, interval)
[v4.1.0新增]
- img {Image} 图片
- color {string} | {number} 颜色值
- interval {number} 每个通道的范围间隔
- 返回 {Image}
将图片二值化,在color-interval ~ color+interval范围以外的颜色都变成0,在范围以内的颜色都变成255。这里对color的加减是对每个通道而言的。
例如images.interval(img, "#888888", 16),每个通道的颜色值均为0x88,加减16后的范围是[0x78, 0x98],因此这个代码将把#787878~#989898的颜色变成#FFFFFF,而把这个范围以外的变成#000000。
images.blur(img, size[, anchor, type])
[v4.1.0新增]
- img {Image} 图片
- size {Array} 定义滤波器的大小,如[3, 3]
- anchor {Array} 指定锚点位置(被平滑点),默认为图像中心
- type {string} 推断边缘像素类型,默认为"DEFAULT",可选的值有:
- CONSTANT iiiiii|abcdefgh|iiiiiii with some specified i
- REPLICATE aaaaaa|abcdefgh|hhhhhhh
- REFLECT fedcba|abcdefgh|hgfedcb
- WRAP cdefgh|abcdefgh|abcdefg
- REFLECT_101 gfedcb|abcdefgh|gfedcba
- TRANSPARENT uvwxyz|abcdefgh|ijklmno
- REFLECT101 same as BORDER_REFLECT_101
- DEFAULT same as BORDER_REFLECT_101
- ISOLATED do not look outside of ROI
- 返回 {Image}
对图像进行模糊(平滑处理),返回处理后的图像。
可以参考有关博客(比如实现图像平滑处理)或者OpenCV文档blur。
images.medianBlur(img, size)
[v4.1.0新增]
- img {Image} 图片
- size {Array} 定义滤波器的大小,如[3, 3]
- 返回 {Image}
对图像进行中值滤波,返回处理后的图像。
可以参考有关博客(比如实现图像平滑处理)或者OpenCV文档blur。
images.gaussianBlur(img, size[, sigmaX, sigmaY, type])
[v4.1.0新增]
- img {Image} 图片
- size {Array} 定义滤波器的大小,如[3, 3]
- sigmaX {number} x方向的标准方差,不填写则自动计算
- sigmaY {number} y方向的标准方差,不填写则自动计算
- type {string} 推断边缘像素类型,默认为"DEFAULT",参见images.blur
- 返回 {Image}
对图像进行高斯模糊,返回处理后的图像。
可以参考有关博客(比如实现图像平滑处理)或者OpenCV文档GaussianBlur。
images.matToImage(mat)
[v4.1.0新增]
- mat {Mat} OpenCV的Mat对象
- 返回 {Image}
把Mat对象转换为Image对象。
找图找色
images.requestScreenCapture([landscape])
- landscape {boolean} 布尔值, 表示将要执行的截屏是否为横屏。如果landscape为false, 则表示竖屏截图; true为横屏截图。
向系统申请屏幕截图权限,返回是否请求成功。
第一次使用该函数会弹出截图权限请求,建议选择“总是允许”。
这个函数只是申请截图权限,并不会真正执行截图,真正的截图函数是captureScreen()。
该函数在截图脚本中只需执行一次,而无需每次调用captureScreen()都调用一次。
如果不指定landscape值,则截图方向由当前设备屏幕方向决定,因此务必注意执行该函数时的屏幕方向。
建议在本软件界面运行该函数,在其他软件界面运行时容易出现一闪而过的黑屏现象。
示例:
//请求截图
if(!requestScreenCapture()){
toast("请求截图失败");
exit();
}
//连续截图10张图片(间隔1秒)并保存到存储卡目录
for(var i = 0; i < 10; i++){
captureScreen("/sdcard/screencapture" + i + ".png");
sleep(1000);
}
该函数也可以作为全局函数使用。
images.captureScreen()
截取当前屏幕并返回一个Image对象。
没有截图权限时执行该函数会抛出SecurityException。
该函数不会返回null,两次调用可能返回相同的Image对象。这是因为设备截图的更新需要一定的时间,短时间内(一般来说是16ms)连续调用则会返回同一张截图。
截图需要转换为Bitmap格式,从而该函数执行需要一定的时间(0~20ms)。
另外在requestScreenCapture()执行成功后需要一定时间后才有截图可用,因此如果立即调用captureScreen(),会等待一定时间后(一般为几百ms)才返回截图。
例子:
//请求横屏截图
requestScreenCapture(true);
//截图
var img = captureScreen();
//获取在点(100, 100)的颜色值
var color = images.pixel(img, 100, 100);
//显示该颜色值
toast(colors.toString(color));
该函数也可以作为全局函数使用。
images.captureScreen(path)
- path {string} 截图保存路径
截取当前屏幕并以PNG格式保存到path中。如果文件不存在会被创建;文件存在会被覆盖。
该函数不会返回任何值。该函数也可以作为全局函数使用。
images.pixel(image, x, y)
- image {Image} 图片
- x {number} 要获取的像素的横坐标。
- y {number} 要获取的像素的纵坐标。
返回图片image在点(x, y)处的像素的ARGB值。
该值的格式为0xAARRGGBB,是一个"32位整数"(虽然JavaScript中并不区分整数类型和其他数值类型)。
坐标系以图片左上角为原点。以图片左侧边为y轴,上侧边为x轴。
images.findColor(image, color, options)
- image {Image} 图片
- color {number} | {string} 要寻找的颜色的RGB值。如果是一个整数,则以0xRRGGBB的形式代表RGB值(A通道会被忽略);如果是字符串,则以"#RRGGBB"代表其RGB值。
- options {Object} 选项
在图片中寻找颜色color。找到时返回找到的点Point,找不到时返回null。
选项包括:
- region {Array} 找色区域。是一个两个或四个元素的数组。(region[0], region[1])表示找色区域的左上角;region[2]*region[3]表示找色区域的宽高。如果只有region只有两个元素,则找色区域为(region[0], region[1])到屏幕右下角。如果不指定region选项,则找色区域为整张图片。
- threshold {number} 找色时颜色相似度的临界值,范围为0~255(越小越相似,0为颜色相等,255为任何颜色都能匹配)。默认为4。threshold和浮点数相似度(0.0~1.0)的换算为 similarity = (255 - threshold) / 255.
该函数也可以作为全局函数使用。
一个循环找色的例子如下:
requestScreenCapture();
//循环找色,找到红色(#ff0000)时停止并报告坐标
while(true){
var img = captureScreen();
var point = findColor(img, "#ff0000");
if(point){
toast("找到红色,坐标为(" + point.x + ", " + point.y + ")");
}
}
一个区域找色的例子如下:
//读取本地图片/sdcard/1.png
var img = images.read("/sdcard/1.png");
//判断图片是否加载成功
if(!img){
toast("没有该图片");
exit();
}
//在该图片中找色,指定找色区域为在位置(400, 500)的宽为300长为200的区域,指定找色临界值为4
var point = findColor(img, "#00ff00", {
region: [400, 500, 300, 200],
threshold: 4
});
if(point){
toast("找到啦:" + point);
}else{
toast("没找到");
}
images.findColorInRegion(img, color, x, y[, width, height, threshold])
区域找色的简便方法。
相当于
images.findColor(img, color, {
region: [x, y, width, height],
threshold: threshold
});
该函数也可以作为全局函数使用。
images.findColorEquals(img, color[, x, y, width, height])
- img {Image} 图片
- color {number} | {string} 要寻找的颜色
- x {number} 找色区域的左上角横坐标
- y {number} 找色区域的左上角纵坐标
- width {number} 找色区域的宽度
- height {number} 找色区域的高度
- 返回 {Point}
在图片img指定区域中找到颜色和color完全相等的某个点,并返回该点的左边;如果没有找到,则返回null。
找色区域通过x, y, width, height指定,如果不指定找色区域,则在整张图片中寻找。
该函数也可以作为全局函数使用。
示例: (通过找QQ红点的颜色来判断是否有未读消息)
requestScreenCapture();
launchApp("QQ");
sleep(1200);
var p = findColorEquals(captureScreen(), "#f64d30");
if(p){
toast("有未读消息");
}else{
toast("没有未读消息");
}
images.findMultiColors(img, firstColor, colors[, options])
- img {Image} 要找色的图片
- firstColor {number} | {string} 第一个点的颜色
- colors {Array} 表示剩下的点相对于第一个点的位置和颜色的数组,数组的每个元素为[x, y, color]
- options {Object} 选项,包括:
- region {Array} 找色区域。是一个两个或四个元素的数组。(region[0], region[1])表示找色区域的左上角;region[2]*region[3]表示找色区域的宽高。如果只有region只有两个元素,则找色区域为(region[0], region[1])到屏幕右下角。如果不指定region选项,则找色区域为整张图片。
- threshold {number} 找色时颜色相似度的临界值,范围为0~255(越小越相似,0为颜色相等,255为任何颜色都能匹配)。默认为4。threshold和浮点数相似度(0.0~1.0)的换算为 similarity = (255 - threshold) / 255.
多点找色,类似于按键精灵的多点找色,其过程如下:
- 在图片img中找到颜色firstColor的位置(x0, y0)
- 对于数组colors的每个元素[x, y, color],检查图片img在位置(x + x0, y + y0)上的像素是否是颜色color,是的话返回(x0, y0),否则继续寻找firstColor的位置,重新执行第1步
- 整张图片都找不到时返回null
例如,对于代码images.findMultiColors(img, "#123456", [[10, 20, "#ffffff"], [30, 40, "#000000"]]),假设图片在(100, 200)的位置的颜色为#123456, 这时如果(110, 220)的位置的颜色为#fffff且(130, 240)的位置的颜色为#000000,则函数返回点(100, 200)。
如果要指定找色区域,则在options中指定,例如:
var p = images.findMultiColors(img, "#123456", [[10, 20, "#ffffff"], [30, 40, "#000000"]], {
region: [0, 960, 1080, 960]
});
images.detectsColor(image, color, x, y[, threshold = 16, algorithm = "diff"])
- image {Image} 图片
- color {number} | {string} 要检测的颜色
- x {number} 要检测的位置横坐标
- y {number} 要检测的位置纵坐标
- threshold {number} 颜色相似度临界值,默认为16。取值范围为0~255。
- algorithm {string} 颜色匹配算法,包括:
- "equal": 相等匹配,只有与给定颜色color完全相等时才匹配。
- "diff": 差值匹配。与给定颜色的R、G、B差的绝对值之和小于threshold时匹配。
- "rgb": rgb欧拉距离相似度。与给定颜色color的rgb欧拉距离小于等于threshold时匹配。
- "rgb+": 加权rgb欧拉距离匹配(LAB Delta E)。
- "hs": hs欧拉距离匹配。hs为HSV空间的色调值。
返回图片image在位置(x, y)处是否匹配到颜色color。用于检测图片中某个位置是否是特定颜色。
一个判断微博客户端的某个微博是否被点赞过的例子:
requestScreenCapture();
//找到点赞控件
var like = id("ly_feed_like_icon").findOne();
//获取该控件中点坐标
var x = like.bounds().centerX();
var y = like.bounds().centerY();
//截图
var img = captureScreen();
//判断在该坐标的颜色是否为橙红色
if(images.detectsColor(img, "#fed9a8", x, y)){
//是的话则已经是点赞过的了,不做任何动作
}else{
//否则点击点赞按钮
like.click();
}
images.findImage(img, template[, options])
- img {Image} 大图片
- template {Image} 小图片(模板)
- options {Object} 找图选项
找图。在大图片img中查找小图片template的位置(模块匹配),找到时返回位置坐标(Point),找不到时返回null。
选项包括:
- threshold {number} 图片相似度。取值范围为0~1的浮点数。默认值为0.9。
- region {Array} 找图区域。参见findColor函数关于region的说明。
- level {number} 一般而言不必修改此参数。不加此参数时该参数会根据图片大小自动调整。找图算法是采用图像金字塔进行的, level参数表示金字塔的层次, level越大可能带来越高的找图效率,但也可能造成找图失败(图片因过度缩小而无法分辨)或返回错误位置。因此,除非您清楚该参数的意义并需要进行性能调优,否则不需要用到该参数。
该函数也可以作为全局函数使用。
一个最简单的找图例子如下:
var img = images.read("/sdcard/大图.png");
var templ = images.read("/sdcard/小图.png");
var p = findImage(img, templ);
if(p){
toast("找到啦:" + p);
}else{
toast("没找到");
}
稍微复杂点的区域找图例子如下:
auto();
requestScreenCapture();
var wx = images.read("/sdcard/微信图标.png");
//返回桌面
home();
//截图并找图
var p = findImage(captureScreen(), wx, {
region: [0, 50],
threshold: 0.8
});
if(p){
toast("在桌面找到了微信图标啦: " + p);
}else{
toast("在桌面没有找到微信图标");
}
images.findImageInRegion(img, template, x, y[, width, height, threshold])
区域找图的简便方法。相当于:
images.findImage(img, template, {
region: [x, y, width, height],
threshold: threshold
})
该函数也可以作为全局函数使用。
images.matchTemplate(img, template, options)
[v4.1.0新增]
- img {Image} 大图片
- template {Image} 小图片(模板)
- options {Object} 找图选项:
- threshold {number} 图片相似度。取值范围为0~1的浮点数。默认值为0.9。
- region {Array} 找图区域。参见findColor函数关于region的说明。
- max {number} 找图结果最大数量,默认为5
- level {number} 一般而言不必修改此参数。不加此参数时该参数会根据图片大小自动调整。找图算法是采用图像金字塔进行的, level参数表示金字塔的层次, level越大可能带来越高的找图效率,但也可能造成找图失败(图片因过度缩小而无法分辨)或返回错误位置。因此,除非您清楚该参数的意义并需要进行性能调优,否则不需要用到该参数。
- 返回 {MatchingResult}
在大图片中搜索小图片,并返回搜索结果MatchingResult。该函数可以用于找图时找出多个位置,可以通过max参数控制最大的结果数量。也可以对匹配结果进行排序、求最值等操作。
MatchingResult
[v4.1.0新增]
matches
- {Array} 匹配结果的数组。
数组的元素是一个Match对象:
- point {Point} 匹配位置
- similarity {number} 相似度
例如:
var result = images.matchTemplate(img, template, {
max: 100
});
result.matches.forEach(match => {
log("point = " + match.point + ", similarity = " + match.similarity);
});
points
- {Array} 匹配位置的数组。
first()
- 返回 {Match}
第一个匹配结果。如果没有任何匹配,则返回null。
last()
- 返回 {Match}
最后一个匹配结果。如果没有任何匹配,则返回null。
leftmost()
- 返回 {Match}
位于大图片最左边的匹配结果。如果没有任何匹配,则返回null。
topmost()
- 返回 {Match}
位于大图片最上边的匹配结果。如果没有任何匹配,则返回null。
rightmost()
- 返回 {Match}
位于大图片最右边的匹配结果。如果没有任何匹配,则返回null。
bottommost()
- 返回 {Match}
位于大图片最下边的匹配结果。如果没有任何匹配,则返回null。
best()
- 返回 {Match}
相似度最高的匹配结果。如果没有任何匹配,则返回null。
worst()
- 返回 {Match}
相似度最低的匹配结果。如果没有任何匹配,则返回null。
sortBy(cmp)
- cmp {Function}|{string} 比较函数,或者是一个字符串表示排序方向。例如"left"表示将匹配结果按匹配位置从左往右排序、"top"表示将匹配结果按匹配位置从上往下排序,"left-top"表示将匹配结果按匹配位置从左往右、从上往下排序。方向包括left(左), top (上), right (右), bottom(下)。
- {MatchingResult}
对匹配结果进行排序,并返回排序后的结果。
var result = images.matchTemplate(img, template, {
max: 100
});
log(result.sortBy("top-right"));
Image
表示一张图片,可以是截图的图片,或者本地读取的图片,或者从网络获取的图片。
Image.getWidth()
返回以像素为单位图片宽度。
Image.getHeight()
返回以像素为单位的图片高度。
Image.saveTo(path)
- path {string} 路径
把图片保存到路径path。(如果文件存在则覆盖)
Image.pixel(x, y)
- x {number} 横坐标
- y {number} 纵坐标
返回图片image在点(x, y)处的像素的ARGB值。
该值的格式为0xAARRGGBB,是一个"32位整数"(虽然JavaScript中并不区分整数类型和其他数值类型)。
坐标系以图片左上角为原点。以图片左侧边为y轴,上侧边为x轴。
##
Point
findColor, findImage返回的对象。表示一个点(坐标)。
Point.x
横坐标。
Point.y
纵坐标。
Canvas
canvas提供了使用画布进行2D画图的支持,可用于简单的小游戏开发或者图片编辑。使用canvas可以轻松地在一张图片或一个界面上绘制各种线与图形。
canvas的坐标系为平面直角坐标系,以屏幕左上角为原点,屏幕上边为x轴正方向,屏幕左边为y轴正方向。例如分辨率为1920*1080的屏幕上,画一条从屏幕左上角到屏幕右下角的线段为:
canvas.drawLine(0, 0, 1080, 1920, paint);
canvas的绘制依赖于画笔Paint, 通过设置画笔的粗细、颜色、填充等可以改变绘制出来的图形。例如绘制一个红色实心正方形为:
var paint = new Paint();
//设置画笔为填充,则绘制出来的图形都是实心的
paint.setStyle(Paint.STYLE.FILL);
//设置画笔颜色为红色
paint.setColor(colors.RED);
//绘制一个从坐标(0, 0)到坐标(100, 100)的正方形
canvas.drawRect(0, 0, 100, 100, paint);
如果要绘制正方形的边框,则通过设置画笔的Style来实现:
var paint = new Paint();
//设置画笔为描边,则绘制出来的图形都是轮廓
paint.setStyle(Paint.STYLE.STROKE);
//设置画笔颜色为红色
paint.setColor(colors.RED);
//绘制一个从坐标(0, 0)到坐标(100, 100)的正方形
canvas.drawRect(0, 0, 100, 100, paint);
结合画笔canvas可以绘制基本图形、图片等。
canvas.drawARGB(a, r, g, b)
canvas.draw
Keys
按键模拟部分提供了一些模拟物理按键的全局函数,包括Home、音量键、照相键等,有的函数依赖于无障碍服务,有的函数依赖于root权限。
一般来说,以大写字母开头的函数都依赖于root权限。执行此类函数时,如果没有root权限,则函数执行后没有效果,并会在控制台输出一个警告。
back()
- 返回 {boolean}
模拟按下返回键。返回是否执行成功。 此函数依赖于无障碍服务。
home()
- 返回 {boolean}
模拟按下Home键。返回是否执行成功。 此函数依赖于无障碍服务。
powerDialog()
- 返回 {boolean}
弹出电源键菜单。返回是否执行成功。 此函数依赖于无障碍服务。
notifications()
- 返回 {boolean}
拉出通知栏。返回是否执行成功。 此函数依赖于无障碍服务。
quickSettings()
- 返回 {boolean}
显示快速设置(下拉通知栏到底)。返回是否执行成功。 此函数依赖于无障碍服务。
recents()
- 返回 {boolean}
显示最近任务。返回是否执行成功。 此函数依赖于无障碍服务。
splitScreen()
- 返回 {boolean}
分屏。返回是否执行成功。 此函数依赖于无障碍服务, 并且需要系统自身功能的支持。
Home()
模拟按下Home键。 此函数依赖于root权限。
Back()
模拟按下返回键。 此函数依赖于root权限。
Power()
模拟按下电源键。 此函数依赖于root权限。
Menu()
模拟按下菜单键。 此函数依赖于root权限。
VolumeUp()
按下音量上键。 此函数依赖于root权限。
VolumeDown()
按键音量上键。 此函数依赖于root权限。
Camera()
模拟按下照相键。
Up()
模拟按下物理按键上。 此函数依赖于root权限。
Down()
模拟按下物理按键下。 此函数依赖于root权限。
Left()
模拟按下物理按键左。 此函数依赖于root权限。
Right()
模拟按下物理按键右。 此函数依赖于root权限。
OK()
模拟按下物理按键确定。 此函数依赖于root权限。
Text(text)
- text {string} 要输入的文字,只能为英文或英文符号 输入文字text。例如Text("aaa");
KeyCode(code)
- code {number} | 要按下的按键的数字代码或名称。参见下表。 模拟物理按键。例如KeyCode(29)和KeyCode("KEYCODE_A")是按下A键。
附录: KeyCode对照表
KeyCode KeyEvent Value
- KEYCODE_MENU 1
- KEYCODE_SOFT_RIGHT 2
- KEYCODE_HOME 3
- KEYCODE_BACK 4
- KEYCODE_CALL 5
- KEYCODE_ENDCALL 6
- KEYCODE_0 7
- KEYCODE_1 8
- KEYCODE_2 9
- KEYCODE_3 10
- KEYCODE_4 11
- KEYCODE_5 12
- KEYCODE_6 13
- KEYCODE_7 14
- KEYCODE_8 15
- KEYCODE_9 16
- KEYCODE_STAR 17
- KEYCODE_POUND 18
- KEYCODE_DPAD_UP 19
- KEYCODE_DPAD_DOWN 20
- KEYCODE_DPAD_LEFT 21
- KEYCODE_DPAD_RIGHT 22
- KEYCODE_DPAD_CENTER 23
- KEYCODE_VOLUME_UP 24
- KEYCODE_VOLUME_DOWN 25
- KEYCODE_POWER 26
- KEYCODE_CAMERA 27
- KEYCODE_CLEAR 28
- KEYCODE_A 29
- KEYCODE_B 30
- KEYCODE_C 31
- KEYCODE_D 32
- KEYCODE_E 33
- KEYCODE_F 34
- KEYCODE_G 35
- KEYCODE_H 36
- KEYCODE_I 37
- KEYCODE_J 38
- KEYCODE_K 39
- KEYCODE_L 40
- KEYCODE_M 41
- KEYCODE_N 42
- KEYCODE_O 43
- KEYCODE_P 44
- KEYCODE_Q 45
- KEYCODE_R 46
- KEYCODE_S 47
- KEYCODE_T 48
- KEYCODE_U 49
- KEYCODE_V 50
- KEYCODE_W 51
- KEYCODE_X 52
- KEYCODE_Y 53
- KEYCODE_Z 54
- KEYCODE_COMMA 55
- KEYCODE_PERIOD 56
- KEYCODE_ALT_LEFT 57
- KEYCODE_ALT_RIGHT 58
- KEYCODE_SHIFT_LEFT 59
- KEYCODE_SHIFT_RIGHT 60
- KEYCODE_TAB 61
- KEYCODE_SPACE 62
- KEYCODE_SYM 63
- KEYCODE_EXPLORER 64
- KEYCODE_ENVELOPE 65
- KEYCODE_ENTER 66
- KEYCODE_DEL 67
- KEYCODE_GRAVE 68
- KEYCODE_MINUS 69
- KEYCODE_EQUALS 70
- KEYCODE_LEFT_BRACKET 71
- KEYCODE_RIGHT_BRACKET 72
- KEYCODE_BACKSLASH 73
- KEYCODE_SEMICOLON 74
- KEYCODE_APOSTROPHE 75
- KEYCODE_SLASH 76
- KEYCODE_AT 77
- KEYCODE_NUM 78
- KEYCODE_HEADSETHOOK 79
- KEYCODE_FOCUS 80
- KEYCODE_PLUS 81
- KEYCODE_MENU 82
- KEYCODE_NOTIFICATION 83
- KEYCODE_SEARCH 84
- TAGLAST KEYCODE 85
Media
Stability: 2 - Stable
media模块提供多媒体编程的支持。目前仅支持音乐播放和媒体文件扫描。后续会结合UI加入视频播放等功能。
需要注意是,使用该模块播放音乐时是在后台异步播放的,在脚本结束后会自动结束播放,因此可能需要插入诸如sleep()的语句来使脚本保持运行。例如:
//播放音乐
media.playMusic("/sdcard/1.mp3");
//让音乐播放完
sl