奔跑的阿诺
码龄5年
关注
提问 私信
  • 博客:77,329
    77,329
    总访问量
  • 11
    原创
  • 1,688,688
    排名
  • 3,976
    粉丝
  • 37
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2020-04-23
博客简介:

a699669的博客

查看详细资料
个人成就
  • 获得121次点赞
  • 内容获得19次评论
  • 获得774次收藏
创作历程
  • 7篇
    2022年
  • 4篇
    2021年
成就勋章
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络tensorflow
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

176人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

主要分类网络-面试整理

经典分类网络-面试整理
原创
发布博客 2022.09.15 ·
801 阅读 ·
3 点赞 ·
2 评论 ·
3 收藏

YOLOv1-YOLOv5的简单学习记录

YOLOv1首次将目标检测转化为回归问题,边框回归直接预测(x,y,w,h)VGG16为backbone,7*7网格负责预测,每个网格预测2个bbox,输出7x7x30损失包括:坐标预测损失、置信度预测损失、类别预测损失(都是均方差损失?损失权重不一致而已)优缺点:简单、快、较好的避免背景错误、小目标检测不佳、召回率低、定位不准,致命缺陷:7x7网格,每一个只预测一类,多个类也只预测一个。YOLOv2Darknet19为backbone,13x13网格,输出13x13x125,每个格子预测
原创
发布博客 2022.06.29 ·
1667 阅读 ·
4 点赞 ·
0 评论 ·
13 收藏

正则化和归一化

正则化  正则化其实就是在原来的目标函数的基础上又加了一项非负项, 并且这个非负项是 w 的函数。 这样的话target不变的基础上得让这个loss变得小一点, 相当于对其产生了一种约束。也可以认为正则化是减小权值方差的一种策略,减小权值的取值范围,从而使得模型求解空间变小,不会拟合出复杂的曲线(函数)文章目录正则化正则化为什么可以抑制过拟合L1和L2正则Dropout1.引入库2.读入数据参考资料正则化为什么可以抑制过拟合   减小模型参数(权重)大小或者参数的数量, 缓解过拟合。其实是说正则化在
原创
发布博客 2022.04.30 ·
2475 阅读 ·
6 点赞 ·
0 评论 ·
15 收藏

权值初始化

1.权值初始化  网络模型搭建完成之后,对网络中的权重进行合适的初始化(可以说是赋初值,这样网络才能运行,梯度才能更新)是非常重要的一个步骤, 初始化好了,比如正好初始化到模型的最优解附近,那么模型训练起来速度也会非常的快, 但如果初始化不好,离最优解很远,那么模型就需要更多次迭代,有时候还会引发梯度消失和爆炸现象, 所以正确的权值初始化还是非常重要的。文章目录1.权值初始化2.为什么需要合理的初始化权重?3.如何进行合理的初始化4.常用的权重初始化方法4.1 Xavier初始化和Kaiming初始化参
原创
发布博客 2022.03.28 ·
1269 阅读 ·
2 点赞 ·
0 评论 ·
5 收藏

YOLOv5-优化器和学习率调整策略

优化器和学习率调整策略pytorch-优化器和学习率调整关于优化器和学习率的一些基础记得很细,还有相关实现代码
原创
发布博客 2022.02.11 ·
19568 阅读 ·
16 点赞 ·
2 评论 ·
174 收藏

正负样本的定义、划分以及用于loss的计算的过程

正负样本定义什么是正负样本?事实上,在目标检测领域正负样本的定义策略是不断变化的。正负样本是在训练过程中计算损失用的,而在预测过程和验证过程是没有这个概念的。许多人在看相关目标检测的论文时,常常误以为正样本就是我们手动标注的GT,其实不然。首先,正样本是待检测的目标,比如检测人脸时,人脸是正样本,非人脸则是负样本,比如旁边的树呀花呀之类的其他东西;其次,正负样本都是针对于算法经过处理生成的框(如:计算宽高比、交并比、样本扩充等)而言,而非原始的GT数据。文章目录正负样本定义正负样本不平衡-引自[Foca
原创
发布博客 2022.01.21 ·
20086 阅读 ·
27 点赞 ·
1 评论 ·
130 收藏

YOLOV5网络结构设计的思考

YOLOV5网络结构由于某些要求的需要,我想重新学习一下YOLOv5,在这里做一个记录,可能有很多地方写的不对,还希望大家包涵。(这篇文章大部分参考了满船清梦压星河HK的博客)如有侵权,可以联系我删除文章目录YOLOV5网络结构FocusBottleneckBottleneckCSP2.读入数据总结参考资料先来一个yolov5s的整体网络结构图吧,图片大都是满船清梦压星河HK大佬的因为我觉的他画的图已经很好了。大家如果想学习yolov5,可以跟这位大佬,他对于yolov5的各个代码文件已经讲的
原创
发布博客 2022.01.09 ·
20330 阅读 ·
44 点赞 ·
14 评论 ·
345 收藏

激活函数的理解及其工作原理

激活函数接触机器学习大概一年多了,自己对于激活函数感觉还是停留在表面,因此想重新学习一下,加深一下对于“激活函数”的理解。文章目录激活函数前言激活函数为什么需要激活函数?二、各种激活函数的介绍1.SigmoidtanhReLU、Leaky ReLU、PReLU、RReLUSwish/SiLUMishAconC、meta-AconC参考资料前言假设有一个问题,对如下面这样的图片进行一个二分类的任务,没用激活函数,该如何拟合出一条曲线呢?(默认做不到!)再考虑一个矩阵运算(毕竟我们使用的神经网络
原创
发布博客 2021.12.29 ·
7729 阅读 ·
15 点赞 ·
0 评论 ·
50 收藏

论文翻译-端到端自动驾驶的多模态融合transformer

用于端到端自动驾驶的多模态融合transformer摘要:如何将互补传感器的表示集成到自动驾驶中?基于几何的传感器融合已经显示出对物体检测和运动预测等感知任务的巨大希望。然而,对于实际驾驶任务,3D场景的全局上下文是关键(全局上下文是指不同对象之间的语义关系?),例如交通灯状态的变化可以影响几何上远离该交通灯的车辆的行为。因此,单独的几何可能不足以有效地融合端到端驾驶模型中的表示。在这项工作中,我们证明了基于现有传感器融合方法的模仿学习策略在高密度动态智能体和复杂场景的存在下执行不足,这需要全局上下文推理
原创
发布博客 2021.12.12 ·
1452 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

论文翻译: 激光雷达-视频驾驶数据集: 高效的学习驾驶策略

论文翻译: LiDAR-Video Driving Dataset: Learning Driving Policies Effectively摘要学习自动驾驶策略是计算机视觉具有挑战性但有前途的一项任务。大多数研究人员相信未来的研究和应用应该结合照相机、录像机和激光扫描获得真实的交通场景全面的语义理解。然而,由于缺乏精确的激光扫描数据,目前的方法只能从大规模的视频中学习。在这篇论文中,我们第一个提出了LiDAR-Video数据集,它提供了大规模、高质量的点云数据、视频以及驾驶者的行为激光,视频记录仪表
原创
发布博客 2021.11.01 ·
532 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

ubantu下mmdetection安装

ubantu下mmdetection安装1.安装anaconda(注意对应的python版本即可)安装mmdetection(主要参照github上官方代码)1.首先先进行换源,在创建anaconda虚拟环境之前(创建虚拟环境之前换原下载速度很慢,不知道为什么)。2.注意命令是在哪个目录下运行(你需要哪个版本就指定好版本,注意各版本之间的依赖关系)conda create -n openmmlab python=3.7 -yconda activate openmmlabconda insta
原创
发布博客 2021.09.29 ·
284 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏