论文笔记
a707819156
这个作者很懒,什么都没留下…
展开
-
lce损失与软交叉熵损失函数
区别lce就是交叉熵损失函数在pytorch中可以有两个实现的方式:采用nn.logsoftmax(),然后采用nn.nn.NLLLoss (负对数似然损失)直接采用nn.CrossEntropyLoss()软交叉熵损失函数,不同于上面的硬标签损失,只求位于lable处的损失,由于给出的标签是软标签,最后的损失是软标签每个位置的数值与对应位置的预测结果的值相乘并累加起来。...原创 2020-05-14 09:50:29 · 2388 阅读 · 1 评论 -
Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification理解
行人重识别之监督学习与无监督学习结合(CVPR2019)贡献该论文提出了存储器的概念用来优化特征提取网络。改论文将监督学习与无监督学习结合起来了。部分论文翻译 在此基础上,我们提出了一种新的无监督域自适应方法,在训练过程中,在网络中引入一个样本存储器来存储目标集合中每个样本的最新表示。内存使我们能够对整个/全局目标训练批而不是小批执行不变性约束。这有助于我们在网...原创 2020-03-06 17:17:21 · 984 阅读 · 0 评论 -
行人重识别综述
研究对象人的整体特征,包括衣着、体形、发行、姿态等等一、技术难点:无正脸照,姿态,配饰,遮挡;拍色角度,图片模糊,室内外环境和光线变化,服装搭配,穿衣风格二、数据集:Market1501(清华),DukeMTMC-reID(Duke),CUHK03(香港中文)三、.评价指标:Rank1:首位命中率mAP:平均精度均值,要求被检索人在底库中所有的图片都排在最前面,这时mAP 的指标才...原创 2020-03-02 17:02:51 · 2342 阅读 · 0 评论 -
Joint Discriminative and Generative Learning for Person Re-identification阅读笔记
总结一.各个损失函数的定义1.生成模型的损失函数类似于GAN的思想,生成模型要能首先还原出原本的图像,论文中将其称为Self-Identity generation,这种自生成包括两种情况,一种是使用外观编码器与结构编码器对输入的图片进行外观编码提取以及结构编码提取,文中将其称之为appearance code以及structure code(注意:其中appearance code标...原创 2020-02-27 20:53:15 · 395 阅读 · 0 评论 -
RCNN阅读笔记
转载自https://blog.csdn.net/u014796085/article/details/83931150前言在经历了一段时间的胡碰乱撞之后,对基于深度学习的目标检测有了初步的认识,决定开始系统地学习目标检测算法,品读论文,研究算法,编程实现。作为小白,还是从早期经典的RCNN开始入手。RCNN详解1.摘要RCNN(region with CNN feature...原创 2019-09-24 10:06:10 · 395 阅读 · 0 评论