使用rtt-studio与stm32CubeMx联合创建项目
使用rtt-studio与stm32CubeMx联合创建项目。
MCU:stm32F405
LED引脚:PA8
外接晶振:8Mhz
介绍文档:【stm32笔记】使用rtt-studio与stm32CubeMx联合创建项目
给定一个单词数组 words 和一个长度 maxWidth ,重新排版单词,使其成为每行恰好有 maxWidth 个字符,且左右
c
用一个start变量来跟踪当前行的开始位置,使用end变量来遍历单词。当遇到一个单词长度超过maxWidth时,单独处理这个单词。对于最后一行的处理,如果end - start等于1或者i + 1是单词列表的最后一个元素,就在单词后面添加一个空格而不是多个空格。
请注意,我在main函数中添加了一个空格在每行末尾,以确保输出格式正确。
c++17 监控文件是否被修改
c++
需要 C++17 或更高版本的编译器支持 <filesystem> 库。
g++ -std=c++17 -o t fileUpdated.cpp
python 给你一个输入字符串 (s) 和一个字符模式 (p) ,请你实现一个支持 '?' 和 '*' 匹配规则的通配符匹配
python
给你一个输入字符串 (s) 和一个字符模式 (p) ,请你实现一个支持 '?' 和 '*' 匹配规则的通配符匹配:
'?' 可以匹配任何单个字符。
'*' 可以匹配任意字符序列(包括空字符序列)。
判定匹配成功的充要条件是:字符模式必须能够 完全匹配 输入字符串(而不是部分匹配)。
示例 1:
输入:s = "aa", p = "a"
输出:false
解释:"a" 无法匹配 "aa" 整个字符串。
示例 2:
输入:s = "aa", p = "*"
输出:true
解释:'*' 可以匹配任意字符串。
C语言从JSON文件内读取参数
c语言从JSON文件内读取参数
JSON数据解析的本函数。测试过是可以使用。
找到 Alice 和 Bob 可以相遇的建筑,C++
给你一个下标从0开始的正整数数组 heights ,其中 heights[i]表示第 i 栋建筑的高度。
如果一个人在建筑 ī,且存在i<j的建筑 j满足 heights[i]< heights[j],那么这个人可以移动到建筑 j。
给你另外一个数组 queries ,其中 queries [i]= [ai,bi]。第 i个査询中,Alice 在建筑 ai ,Bob 在建筑 bi。
请你能返回一个数组 ans ,其中 ans[i]是第 i 个査询中,Aice 和 Bob 可以相遇的 最左边的建筑。如果对于査询 i ,Alice 和 Bob 不能相遇,令 ans[i]为-1。
用 C 语言实现贪心算法的一个经典示例:零钱兑换问题
贪心算法
贪心算法是一种在每一步选择中都做出局部最优选择的算法。它适用于一些优化问题,其中选择局部最优解能够导致全局最优解。用 C 语言实现贪心算法的一个经典示例:零钱兑换问题。该问题是:给定一个金额和一些不同面额的硬币,要求用最少的硬币数来兑换该金额。
问题描述
假设我们有硬币面额 [1, 3, 4],我们需要找出兑换给定金额(例如 6)的最少硬币数。
串联所有单词的子串,找到所有符合条件的串联子串的起始索引
思路
定义子串长度:所有字符串 words 的长度是相同的,假设为 L。那么一个有效的串联子串的总长度应该是 L * len(words)。
滑动窗口:我们可以使用滑动窗口的方法来遍历字符串 s。窗口的大小应为 L * len(words)。在每个窗口内,我们检查是否可以找到 words 中所有字符串的一个排列。
哈希表:我们可以使用哈希表来记录 words 中每个字符串出现的次数,并使用另一个哈希表来记录当前窗口中每个字符串的出现次数。
验证子串:对于每个窗口,检查窗口中字符串的出现次数是否与 words 中字符串的出现次数一致。如果一致,则记录窗口的起始索引。
在Linux环境下使用C语言模仿下雪效果,你可以利用终端控制字符来在终端中绘制简单的雪花效果
利用字符和控制台清屏来模拟雪花下落的效果
代码解释
clearScreen 函数:使用 ANSI 转义序列清屏,重置终端显示位置。
drawSnowflake 函数:在指定的坐标位置绘制雪花字符 *。每个雪花的位置由 snowflakes 数组提供。
updateSnowflakes 函数:更新雪花的位置,使其逐渐下落。如果雪花超出屏幕底部,则重新生成其位置到屏幕顶部。
main 函数:
初始化雪花位置。
在无限循环中绘制雪花并更新其位置,每次循环之间暂停 100 毫秒。
编译和运行
保存代码到一个文件,例如 snow.c,然后使用以下命令编译和运行:
gcc -o snow snow.c
./snow
这个简单示例在终端中创建了一个雪花下落的效果。你可以根据需要调整雪花的数量、速度等。
合井K个升序链表,python实现
问题描述
将多个升序链表合并为一个升序链表。要求算法能有效处理链表数组的合并,特别是在链表数量较多时。
解题思路
使用优先队列(最小堆):
优先队列(或最小堆)可以有效地从所有链表的头部提取最小值,并保持整体有序。
每次从堆中提取最小值,并将该节点的下一个节点加入堆中,直到所有链表都被处理完。
链表节点类:
定义一个链表节点类,以便在优先队列中存储和处理节点。
合并链表:
使用优先队列的特性来保证链表合并的时间复杂度是 O(N log k),其中 N 是所有节点的总数,k 是链表的数量。
寻找两个正序数组的中位数
python
问题描述
我们需要在两个有序数组中找到中位数,确保算法的时间复杂度为 O(log(min(m, n)))。
解题思路
确保第一个数组较小:始终在较小的数组上进行二分查找,以确保时间复杂度最优。
进行二分查找:
定义分割点 i 在 nums1 中,分割点 j 在 nums2 中,使得 i + j 为两个数组的中位数所需的总元素数的一半。
根据分割点的选择,确保 nums1[i - 1] <= nums2[j] 和 nums2[j - 1] <= nums1[i] 这两个条件成立。
计算中位数:
如果满足上述条件,则找到中位数:
如果总元素数为偶数,中位数为 (max(nums1[i-1], nums2[j-1]) + min(nums1[i], nums2[j])) / 2。
如果总元素数为奇数,中位数为 max(nums1[i-1], nums2[j-1])。
Ubuntu系统装机后3个常规配置
ubuntu22.04安装教程
一、terminal 打不开
二、给用户添加sudo权限
三、设置共享目录(虚拟机vmbox)
python设计一个带通滤波器
pycharm
以下是一个基本的Python示例,展示如何设计带通滤波器,并使用给定的采样率进行数字信号处理。我们将使用 scipy 库来设计滤波器,并使用 numpy 进行信号处理。
步骤
安装依赖库:
确保你已经安装了 scipy 和 numpy。可以使用以下命令安装:
pip install scipy numpy
定义带通滤波器:
选择合适的滤波器设计方法,比如 scipy.signal 提供的 butter 函数来设计巴特沃斯滤波器。
应用滤波器:
使用 scipy.signal 的 lfilter 函数来应用滤波器到信号。
矩阵点乘通常指的是两个矩阵的矩阵乘法
python
1. 使用 np.dot 函数
np.dot 函数可以用于计算两个数组的点积。如果输入是二维矩阵,它将计算矩阵乘法。
2. 使用 @ 运算符
Python 3.5 及以上版本支持使用 @ 运算符进行矩阵乘法。这是 np.dot 的简写形式。
3. 使用 np.matmul 函数
np.matmul 也用于矩阵乘法,与 np.dot 类似,但 np.matmul 更直观地表示矩阵乘法。
注意事项
维度匹配: 矩阵乘法要求第一个矩阵的列数等于第二个矩阵的行数。如果维度不匹配,将会引发错误。
逐元素乘法: 如果你需要逐元素乘法,可以使用 * 运算符。例如,A * B 会逐元素相乘,而不是矩阵乘法。
总结
使用 np.dot、@ 运算符或 np.matmul 函数可以进行矩阵点乘(矩阵乘法)。
确保矩阵的维度匹配以避免运行时错误。
queue 模块的一些主要类型和用法
queue 模块
queue 模块包含以下几种类型的队列:
queue.Queue:先进先出(FIFO)队列。
queue.LifoQueue:后进先出(LIFO)队列,类似于栈。
queue.PriorityQueue:优先级队列,按优先级顺序处理元素。
示例代码
1. queue.Queue
2. queue.LifoQueue
3. queue.PriorityQueue
主要方法
put(item, block=True, timeout=None):将 item 放入队列。block 和 timeout 控制是否阻塞。
get(block=True, timeout=None):从队列中取出一个 item。block 和 timeout 控制是否阻塞。
task_done():标记一个任务已经完成。必须在 get() 后调用。
join():等待队列中所有任务完成。
基于matlab的EM算法聚类可视化程序
代码说明
数据生成:
使用 mvnrnd 函数生成两个高斯分布的数据点。
绘制原始数据:
使用 scatter 绘制数据点。
EM 聚类:
使用 fitgmdist 函数拟合高斯混合模型,并对数据进行聚类。
绘制高斯混合模型轮廓:
使用 ezcontour 绘制高斯混合模型的轮廓。
绘制聚类结果:
使用 gscatter 绘制不同簇的颜色标识。
绘制高斯分布轮廓:
自定义 plot_gaussian_ellipse 函数绘制每个高斯分布的轮廓。
注意事项
数据维度:这个示例是二维的。如果你的数据是高维的,你可能需要调整可视化部分。
参数调整:你可以根据数据的实际情况调整高斯分布的数量和其他参数。
工具箱依赖:确保 MATLAB 环境中安装了 Statistics and Machine Learning Toolbox,因为 fitgmdist 函数需要这个工具箱。
要将数组中的所有 0 移动到数组的末尾,同时保持非零元素的相对顺序
要将数组中的所有 0 移动到数组的末尾,同时保持非零元素的相对顺序,我们可以通过以下方法实现:
使用两个指针:一个用于遍历数组,另一个用于跟踪非零元素的位置。
遍历数组,当找到一个非零元素时,将其移动到跟踪非零元素位置的地方。
遍历完成后,将剩余的元素置为 0。
一些常见的递归示例: 计算阶乘 斐波那契数列 递归遍历树结构
c语言
递归是编程中的一个强大概念,其中一个函数在其定义中调用自己。在 C 语言中,递归常用于解决那些可以被分解为更小的相同问题的任务。递归通常包括两个主要部分:
递归基准条件:这是递归停止的条件,用于防止无限递归。
递归步骤:函数调用自身来解决更小的子问题。
注意事项
递归深度:递归深度过大可能会导致栈溢出。在编写递归程序时,应当确保基准条件能够有效地终止递归。
性能问题:递归有时会导致性能问题,因为每次递归调用都需要占用栈空间。对于一些问题,迭代解决方案可能更有效。
尾递归优化:某些编译器能够优化尾递归,从而减少递归调用的栈空间,但这在 C 语言中并不总是得到支持。
一个简单的回调函数实例代码
c
回调函数的基本用法
1、定义回调函数:首先定义一个符合预期签名的函数。例如,一个简单的回调函数可以是这样的
2、定义接受回调函数的函数:这个函数接受一个函数指针作为参数,并在某个时刻调用它。
3、调用函数并传递回调函数
在服务文件中定义服务的配置 是一个基本的示例
在 Ubuntu 系统中,systemctl 是用于管理系统服务(systemd 服务)的工具。如果你想禁用一个系统服务,如 test_service,可以使用 systemctl 命令。要编写和管理系统服务,需要了解如何创建和配置一个 .service 文件。下面是编写和管理 Ubuntu 系统服务的一些基本规则和步骤。
CMake 的基本使用说明,包括安装、创建项目、生成构建文件以及构建项目的步骤
cmake
1. 安装 CMake
在不同操作系统中的安装方式:
Windows:
从 CMake 官方网站 下载并安装 CMake。
或者可以通过包管理器如 Chocolatey 安装:choco install cmake.
macOS:
使用 Homebrew 安装:brew install cmake.
Linux:
在 Debian/Ubuntu 上:sudo apt-get install cmake.
在 Fedora 上:sudo dnf install cmake.
在 Arch Linux 上:sudo pacman -S cmake.
2. 创建项目
目录结构
首先,您需要创建一个项目目录,并在其中放置源代码和 CMakeLists.txt 文件。例如,假设您的项目名为 MyProject:
volatile使用说明
volatile
volatile 关键字在编程语言中通常用于告诉编译器某个变量可能会被程序外部的因素改变,因此编译器在优化代码时不应对该变量进行优化。在 C 和 C++ 中,volatile 主要用于确保程序在读取或写入某个变量时不会受到优化影响,保证每次访问变量时都直接从内存中读取或写入。
使用说明
1. C 语言中的 volatile
在 C 语言中,volatile 关键字用于告诉编译器,某个变量的值可能会被程序的其他部分(如硬件、外部程序或中断服务程序)改变,因此每次访问该变量时都应从内存中读取,而不是使用寄存器缓存的值。常见的用例包括:
硬件寄存器:用于直接操作硬件寄存器的情况。
中断服务程序:当一个中断服务程序修改了某个变量时,主程序需要访问最新的值。
多线程编程:确保线程访问共享变量时能看到最新的值。
rsync 是一个强大而灵活的文件同步和备份工具
在Ubuntu系统上,rsync 是一个强大而灵活的文件同步和备份工具。它可以在本地系统之间或通过SSH连接在本地和远程系统之间同步文件和目录。以下是 rsync 的详细使用方法和常用方式:
基本语法和选项
rsync 的基本语法如下:
复制代码
rsync options source destination
其中:
options: 可以是一系列选项,用于控制同步的行为,如 -a(归档模式,保留属性)、-v(详细输出)、-r(递归复制子目录)等。
source: 指定源文件或目录的路径。
destination: 指定目标路径,可以是本地路径或远程路径。
linux 使用cmake编译cuda CmakeList.txt
ubuntu
可以直接编译。
项目是C/C++代码,其中cuda是其中1个子目录,附件的CmakeList.txt是子目录的camke文件。
需要根据你的项目进行修改。
Linux 编译与反汇编流程详细文档
linux
在 Linux 上,编译和反汇编代码是软件开发和调试的重要步骤。以下文档详细描述了从源代码编译到反汇编的整个流程,包括主要步骤和相关工具的使用。
1. 编译流程概述
编译是将源代码转换为机器代码的过程,通常包括以下步骤:
预处理 (Preprocessing)
编译 (Compilation)
汇编 (Assembly)
链接 (Linking)
python读取csv文件及读取多个文件,将字符串转成numpy
python读取csv文件及读取多个文件,将字符串转成numpy
matrix = read_csv_to_numpy_matrix(file_path, start_row)从指定行读取,将结果放入numpy矩阵中。
csv_matrices = read_csv_files_to_dict(directory_path, start_row)内部调用read_csv_to_numpy_matrix读取单个文件,将单位文件内容存入字典内,key是文件名。
将数据准备、模型训练和评估步的示例代码,sklearn基础教程
这段代码依次完成了以下操作:
加载鸢尾花数据集并准备特征 (X) 和目标 (y)。
使用 train_test_split 函数将数据集划分为训练集 (X_train, y_train) 和测试集 (X_test, y_test)。
创建 LogisticRegression 模型对象,并将其最大迭代次数设置为 200。
使用训练集 (X_train, y_train) 对模型进行训练。
使用测试集 (X_test) 进行预测,并将预测结果存储在 y_pred 中。
使用 accuracy_score 函数计算预测准确率,并打印出来。
一个简单的matlab示例代码,演示如何使用 k-means 对数据进行聚类
kmeans聚类算法matlab代码
一个简单的示例代码,演示如何使用 k-means 对数据进行聚类
代码解释:
生成示例数据:这里生成了两个具有不同分布的数据集,每个数据集包含100个样本点,分布在不同的区域。
设置聚类数量:K 指定了希望将数据分成的类别数目。
调用 kmeans 函数:kmeans(X, K) 对数据 X 进行 k-means 聚类,其中 idx 返回每个数据点所属的聚类编号,C 返回每个聚类的中心点坐标。
可视化结果:使用 gscatter 函数将每个数据点根据其聚类分配进行绘制,并在图中标记出聚类的中心点。
如何使用 k-means 算法对二维数据进行聚类,并通过图形直观地展示了聚类结果和中心点的位置。
一些关于变量 c 的 C 语言代码示例,展示了变量的声明、定义和使用
c语言
C 语言变量基础
变量的定义和声明:
声明: 指定变量的名称和数据类型,以便编译器为其分配内存。
定义: 同时声明和初始化变量。
数据类型:
C 语言提供了多种基本数据类型,如 int、float、char、double 等。
变量的类型决定了它可以存储的数据种类以及内存的使用方式。
作用域:
局部变量: 只在定义它的函数或块内有效。
全局变量: 在整个程序中都有效,通常在所有函数之外定义。
初始化:
可以在定义变量时初始化它,也可以在后续代码中赋值。
示例 1: 整数变量
示例 2: 字符变量
示例 3: 变量初始化
示例 4: 变量作用域
解释
示例 1: 声明并初始化了一个 int 类型的变量 c,并输出其值。
示例 2: 声明了一个 char 类型的变量 c,并输出其字符值。
示例 3: 变量 c 被初始化为 25,之后更新为 50,并显示其变化。
示例 4: 展示了全局变量和局部变量的作用域。局部变量 c 在 main 函数内定义,它遮蔽了全局变量 c,但全局变量 c 在 printValue 函数中可见。
python使用matplotlib画1维、2维和3维图 对每种类型的基本示例
matplotlib
1维图
1维图通常指的是折线图或条形图。是一个折线图的例子。
2维图包括散点图、条形图、线图、等高线图等。是一个散点图的例子。
对于3维图,matplotlib 提供了 mpl_toolkits.mplot3d 工具包来创建三维空间中的图形。是一个基本的3维散点图的例子
一个详细的示例代码,演示如何使用 pandas 读取 Excel 文件中的数据
python读取excel数据
命令安装:
pip install pandas
解释:
导入 pandas 库:首先导入 pandas 库,通常用 import pandas as pd。
指定 Excel 文件路径:设置 file_path 变量为 Excel 文件的路径。在示例中假设文件名为 data.xlsx,请根据实际情况修改路径和文件名。
读取 Excel 文件:使用 pd.read_excel() 函数来读取 Excel 文件中的数据。默认情况下,它会读取第一个工作表的所有数据,并将其存储在一个 DataFrame 对象中(df)。
显示数据:通过 print(df) 打印读取的数据,以验证是否成功读取。
其他参数设置:在实际使用中,你可以根据需要设置更多的参数,如读取特定工作表、指定列、处理表头等。
使用 Python 实现堆排序的代码
堆排序(Heap Sort)是一种高效的排序算法,其基本思想是利用最大堆(或最小堆)这种数据结构来实现排序。堆是一种特殊的树形数据结构,满足堆的性质:对于最大堆,父节点的值大于等于子节点的值;对于最小堆,父节点的值小于等于子节点的值。
堆排序的基本过程如下:
建立最大堆:将待排序的序列构造成一个最大堆。
堆顶元素与末尾元素交换:将堆顶元素(最大值)与末尾元素进行交换,使末尾元素为最大值。
调整堆:将剩余的元素重新构造成最大堆。
重复步骤 2 和步骤 3,直到整个序列有序。
解释:
heapify(arr, n, i) 函数:用于将以 arr[i] 为根的子树调整为最大堆。n 是堆的大小,i 是要调整的根节点索引。
heap_sort(arr) 函数:实现堆排序的主函数。首先构建最大堆,然后反复将堆顶元素(最大值)与末尾元素交换并调整堆,直到整个序列有序。
在堆排序中,建堆的时间复杂度为 O(n),每次调整堆的时间复杂度为 O(log n),因此总体时间复杂度为 O(n log n)。堆排序是一种不稳定的排序算法,空间复杂度为 O(1)。
matlab信号仿真 雷达探伤信号波形仿真
只是波形仿真,无数学公式。
一个波形是原始信号,原始信号本身有波动。一个是加噪信号。
一个简单的C++示例,它演示了如何进行基本的文件操作,包括打开、读取、写入和关闭文件
c
这个程序创建一个新文件(如果它不存在),然后向其中写入一些文本,接着从该文件中读取文本并打印到控制台。
这段代码首先包含了必要的头文件,定义了一个文件路径和一个要写入文件的字符串。之后,它尝试打开文件以供写入,并将数据写入文件。完成写入后,文件被关闭。
然后,代码尝试以读取模式打开同一个文件,并逐行读取内容,将每一行打印到控制台。最后,读取模式下的文件也被关闭。
请注意以下几点:
文件名example.txt需要根据你的具体需求进行修改。
如果文件已经存在,上述程序将会覆盖它。如果你想追加内容而不是覆盖,可以使用std::ofstream outfile(filePath, std::ios::app);来打开文件。
错误处理是通过检查文件流的is_open()方法来完成的,并且错误信息被输出到标准错误流(std::cerr)。
编译并运行此程序之前,请确保你有权限在当前目录下创建和读取文件。你可以使用如下命令编译程序(如果你的编译器是g++的话):
g++ -o file_op file_operations.cpp
./file_op
一个使用C语言编写的文件操作程序,其目的是检查一个指定文件是否存在,并根据其最后修改时间来判断文件是否更新
c语言文件读写操作代码
使用C语言编写的文件操作程序,其目的是检查一个指定文件是否存在,并根据其最后修改时间来判断文件是否更新。如果文件存在且已更新,程序可以执行特定的加载或处理操作;如果文件不存在,程序将创建一个新文件并写入注释内容。以下是一个基本的程序框架,您可以根据具体需求进行扩展。
这个程序定义了一个名为check_and_update_file的函数,它会检查文件是否存在,如果是新文件或者已更新的文件,会打印一条消息表示文件已更新。在实际应用中,您可能需要替换这部分以执行实际的文件处理逻辑。
请确保将FILE_PATH宏定义为您的文件实际路径,并且根据需要调整文件更新时间的判断标准。
大文件快速删除、大量小文件删除、删除N天前的文件以及删除特定类型的文件
linux常用命令大全 文件删除
1. 大文件快速删除
2. 大量小文件删除
3. 删除N天前的文件
4. 删除某一类文件
注意事项
使用rm命令时要非常小心,因为它一旦被错误地执行,就不会轻易撤销。
rm不会询问确认就删除文件,所以务必检查你的命令是否正确。
-delete选项是用来替代-exec的简写形式,它同样会将找到的文件删除,但更加高效。
如果目录中包含子目录,使用-r或-R选项来递归删除。
数据结果 二叉树的使用简单用例
数据结构
// 创建新节点
// 中序遍历
插入节点
一个简单的Python示例,使用遗传算法来解决TSP问题
旅行商问题
旅行商问题(Traveling Salesman Problem,TSP)是一个经典的组合优化问题。其目标是找到一条最短的路径,使得旅行商能够访问每个城市一次后返回起点。
需要定义城市和距离计算方法。
定义遗传算法的相关类和方法。
运行遗传算法。
这个简单的遗传算法实现使用了交叉(crossover)和变异(mutation)来生成新的解决方案。请注意,遗传算法的结果可能不是最优解,但它通常会找到一个相当不错的近似解。对于实际应用,可能需要调整参数,如种群大小、突变率和代数,以达到更好的结果。
使用 Python 中的 SciPy 库来设计经典滤波器,并使用仿真数据测试其效果
首先生成了一个包含噪声的测试信号 x,然后使用 signal.butter 函数设计了一个4阶巴特沃斯低通滤波器,并将其应用于测试信号。最后,我们使用 Matplotlib 库将原始信号与滤波后的信号进行了可视化比较。
可以根据需要调整滤波器的类型、阶数和截止频率,并使用不同的测试数据来验证滤波器的性能。
另外引入了四种不同类型的滤波器:Butterworth、Chebyshev Type I、Chebyshev Type II和Elliptic。每种滤波器都是4阶低通滤波器,截止频率为0.08。通过对比这些滤波器的效果,您可以观察到它们在滤波后信号的响应特性和滤波效果上的区别。
一个简单的示例代码,演示如何使用 SVM 对数据进行分类
代码演示了如何使用 scikit-learn 库中的 SVM 实现对鸢尾花数据集进行分类。您可以根据自己的数据集替换数据加载部分,并调整模型设置以满足您的需求。