- 博客(3)
- 资源 (4)
- 收藏
- 关注
原创 【推荐算法】从架构到原理学习推荐(上)
前言推荐系统是算法领域一个比较有趣且自由度很高的玩法,解决问题的宗旨是“给什么样的user推荐什么样的item”,当然这里的user和item概念可以互换或升华。工业上不同企业所用的推荐系统架构也不尽相同,本文介绍的是一套工业上比较基础的三层式架构:召回+排序+过滤。零基础朋友们也别慌,本文会通俗介绍所有概念,下一篇文章再讲解代码实战,欢迎大佬们指出不足之处!目录前言推荐的定义推荐的架构二级目录三级目录推荐的定义狭义上的推荐: 给用户(User)推荐项目(Item),挖掘用户可能喜欢的项目展示给用
2020-10-23 16:24:08 2359 3
原创 【机器学习】决策树模型详解
现在工业和竞赛上比较流行的模型大都是集成学习模型, 如LGB, XGB, 这些模型的本质是若干个决策树组成的, 虽然单纯决策树本身的使用不是特别广泛, 但是从本质上理解这个基础模型, 能更好地理解集成学习模型. 决策树本身的逻辑是比较简单的, 但是涉及的领域比较广, 包括信息论的概念等等, 读者们如果花大量精力弄懂其所涉及的领域知识, 实用意义不是很大, 因此本文用大白话讲明白决策树的逻辑即可, 就不分AB类读者了, 大家可以把精力放在后续的集成学习模型上.决策树是一个基础算法, 可以用于回归或分类, 这
2020-06-30 23:42:20 3225 1
原创 【机器学习】如何有条理地认识SVM支持向量机
SVM 是一个非常优雅的算法,具有完善的数学理论,虽然如今工业界用到的不多,但还是决定花点时间去写篇文章整理一下目录1. SVM算法思想1.1 线性可分1.2 最大间隔超平面1.3 支持向量1.4 最优化问题2. 理论推导求解2.1 拉格朗日乘子法2.2 强对偶性3. SVM优化4. 实际情况求解4.1 解决问题4.2 优化目标及求解5. 核函数5.1 线性不可分5.2 核函数的作用5.3 常见核函数6. SVM优缺点1. SVM算法思想1.1 线性可分首先我们先来了解下什么是线性可分。在二维空间
2020-06-30 10:08:19 958 2
BaiduIndex_spider.zip
2020-06-29
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人