1.使用numpy生成随机数
import numpy as np
seed = 23455
rng = np.random.RandomState(seed)
X = rng.rand(32,2)
Y = [[int(x0 + x1 < 1)] for (x0, x1) in X]
Point:
Y = [[int(x0 + x1 < 1)] for (x0, x1) in X]
实现了
1.遍历,取数
2.实现判断
3.返回逻辑值
2.每次输入8组数据,分批送入,定位的起始标签
接下来,start作为数组的指针,就可以依次来定位起始点
0-7
8-15
16-23
24-31
0-7
start = (i*BATCH_SIZE) % 32
end = start + BATCH_SIZE
# 这里的数组指针标签是前闭后开,所以 + BATCH_SIZE 刚刚好
sess.run(train_step, feed_dict={x:X[start:end], y_:Y[start:end]})
3.在多维度定义输出的时候,可以用%a/&b/%c任意字母将后面的输出打印,有几个百分号就顺序对应几个输出
print("After %d training steps, loss_mse on all data is %g" % (i, total_loss))