参考视频
8-整体流程debug解读_哔哩哔哩_bilibili
有监督与无监督
一、线性回归
1、分类与回归
- 银行贷款:1=贷款;0=不贷款 这样属于分类问题
- 银行贷款:能贷款多少 这样属于回归问题
-
- 相当于确定x1、x2的数值,使其能够更好的拟合下图中的面,以此为基准来预测贷款金额(回归)
- 相当于将上图中的工资、年龄、额度转化为矩阵的形式输入
2、误差
- 如下图,空间中的一个点在X1,X2轴上相同,只在Y轴上有误差
独立同分布的意义
- 独立:各数据之间互不影响,均是独立的
- 同分布:来自同一个数据集
似然函数
3、梯度下降
- 当得到了一个目标函数后,如何进行求解 ?直接求解 ?(并不一定可解,线性回归可以当做是一个特例 )
-
- 常规套路: 机器学习的套路就是交给机器一堆数据,然后告诉它什么样的学习方式是对的(目标函数),然后让它朝着这个方向去做
-
-
- 在loss曲线中某一点上,找到其切线,切线的反方向就是梯度下降的方向
-
-
- 为了防止下一次更新梯度的点位置不在loss曲线上,要合理设置在上一切线方向上的移动距离
-
-
- 如何优化: 一口吃不成个胖子,要静悄悄的一步步的完成迭代( 每次优化一点点(小步长进行梯度下降),累积起来就是个大成绩了 )
4、参数更新方法、优化设置
- 1/m:所有的样本个数
- yi:标签值
- hθ(xi):预测值
- xij:数据集中本来就有的值
- 批量梯度下降在数据量大的时候容易出现运算过于复杂的情况
二、聚类算法(无监督问题,没有标签)
- 聚类:相似的数据分为一个组
- 难点:如何评估(聚类没有标签的概念),如何调参
1、K-MEANS算法
- k:聚类的数量
- 质心:各个数据在聚类后在各个维度上取均值
- 优化目标:使得聚类中的所有数据与质心的距离和都是最小
K-MEANS算法工作流程
- (b):k=2,随机初始化2个质心
- (c):对所有数据进行计算,更靠近红色质心的分类到红色组
- (d):更新质心(使用上图优化目标的公式)
- (e):更新聚类
- (f):再次更新质心
K-MEANS算法优劣势
-
- K值难确定:无法确定数据真正的分组数量(没有标签,无法确定)
- 难以发现特殊情况的数据分布方式:如下图所示,无法使用K-MEANS算法算出聚类结果
-
- 下图中的情况即使继续更新质心,也不会再出现更好的聚类结果(初始质心对结果有比较大的影响)
2、DBSCAN算法
图示理解聚类过程
- 红色、黄色点,经过聚类后成为了一个类别;
- N点由于不在范围内,且没有点能在r的距离内碰到N点,所以N点不作为类别中
DBSCAN算法可应用的点
BSCAN算法工作流程
-
- 参数D:输入的数据集
- 参数ε:指定的半径r
- MinPts:密度阈值(半径ε为圆圈中有多少个数据点)
BSCAN算法优劣势
三、决策树算法
1、决策树的组成
2、决策树的训练与测试
3、如何切分特征(选择树节点)
衡量标准-熵
- 为了选出上图中的“衡量标准”,使用熵
- 定义:随机变量不确定性的度量(数据内部的混乱程度)
信息增益(ID3)原理(确定根节点)
4、决策树构造实例
(1)如何确认根节点
- 如何构造,下图展示了X1~X4四种根节点选择的情况
- 经过上述计算,四种情况下,只有Outlook作为根节点时信息增益最大(为0.247),所以根节点设置为Outlook
5、对于连续值,如何划分节点
- 对于下面图中数值,划分出9中二分的结果,分别算出熵值,得到最终划分结果
6、剪枝策略(减少过拟合风险)
(1)预剪枝
- 预剪枝:限制树的深度、叶子结点个数、样本数、信息增益等
(2)后剪枝
四、随机森林算法原理(集成算法原理)
1、集成算法
(1)Bagging模型-随机森林算法
-
- 随机:采样随机、选择随机
- 森林:多个决策树并行放在一起
随机森林优势
-
- 更改某一节点Xi上的所有数据值,对比更改前后模型的错误路(或损失率)
-
-
- 若error1 ≈ error2,则这一节点Xi不重要
- 若error1 >> error2,则这一节点Xi非常重要
(2)Boosting模型-提升算法
Adaboost工作流程
(3)Stacking堆叠模型
五、支持向量机
1、支持向量机要解决的问题
(1)决策边界
(2)距离的计算
(3)数据标签的定义
(4)目标函数推导
(5)拉格朗日算子法(在条件下求极值问题)
六、神经网络算法原理
1、特征工程的作用
2、得分函数
3、损失函数
4、前向传播过程
5、反向传播(不断更新权重)
6、神经网络整体架构
(1)正则化
(2)激活函数
7、网络过拟合解决方法
七、贝叶斯算法
1、贝叶斯要解决的问题
2、贝叶斯算法(公式)推导过程
-
-
- P (A|B) = P(A)*P (B|A) / P (B)
-
- 在B的情况下发生A的概率不容易求出(如穿长裤是女生)
-
-
- 故利用公式求出在A的情况下发生B的概率(是女生穿长裤),进而算出最终结果