项目地址 https://github.com/MLEveryday/100-Days-Of-ML-Code
原项目这一天的任务:在Coursera开始深度学习的专业课程
说明:由于机器学习相关的基础尚未完全掌握,决定接下来不完全按照原项目的计划来,根据原项目后面的,看了什么就记录什么。今天先看看后面的决策树。
一、决策树是什么?
监督学习算法
主要用于分类
二、决策树的例子
假设需要划分的数据是这样的:
决策树就是把这些数据切片:
对应的决策树是这样的:
构建决策树可以使用不同的算法,CART、IDS等
二、决策树算法:ID3
Iterative Dichotomizer 3:
基本思想:自上而下,贪婪搜索
如何衡量什么是好?信息增益、熵。
熵:度量混乱程度
信息增益:
生成决策树的步骤:
参考:
决策树 - 熵,信息增益的计算 https://www.cnblogs.com/okokok/p/6117333.html