买卖股票的最佳时机 IV
题目描述
给你一个整数数组 prices
和一个整数 k
,其中 prices[i]
是某支给定的股票在第 i
天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k
笔交易。也就是说,你最多可以买 k
次,卖 k
次。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。
示例 2:
输入:k = 2, prices = [3,2,6,5,0,3]
输出:7
解释:在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。
随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能获得利润 = 3-0 = 3 。
解题思路
-
确定dp数组以及下标的含义
-
dp[i][j]
表示在第i
天结束时,状态j
下的最大利润。其中:dp[i][0]
:第i
天没有进行任何交易的最大利润(始终为0)dp[i][j]
(j
为奇数):第i
天进行了第(j+1)/2
次买入操作后的最大利润dp[i][j]
(j
为偶数):第i
天完成了第j/2
次卖出操作后的最大利润
-
-
确定递推公式
-
递推公式-买:
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i])
-
第
i
天进行第(j+1)/2
次买入操作的最大利润,可以从两种情况转移而来:- 保持前一天的状态(
dp[i - 1][j + 1]
) - 在第
i
天买入股票(dp[i - 1][j] - prices[i]
)
- 保持前一天的状态(
-
-
递推公式-卖:
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i])
-
第
i
天完成第j/2
次卖出操作的最大利润,可以从两种情况转移而来:- 保持前一天的状态(
dp[i - 1][j + 2]
) - 在第
i
天卖出股票(dp[i - 1][j + 1] + prices[i]
)
- 保持前一天的状态(
-
-
-
dp数组初始化
dp[0][j] = -prices[0]
(j
为奇数):进行第(j+1)/2
次买入操作dp[0][j] = 0
(j
为偶数):完成第j/2
次卖出操作0)
-
确定遍历顺序
- 从左到右遍历价格数组,对于每一天,按照状态
0
到2 * k
的顺序更新状态。
- 从左到右遍历价格数组,对于每一天,按照状态
-
举例推导dp数组
-
以输入[1,2,3,4,5],k=2为例,手推dp数组的状态图如下:
-
代码实现
测试地址:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iv/
class Solution {
public:
int maxProfit(int k, vector<int> &prices) {
int len = prices.size();
if (len == 0)
return 0; // 如果没有价格数据,返回利润为0
// 创建一个二维dp数组,其中dp[i][j]表示第i天状态j下的最大利润
vector<vector<int>> dp(len, vector<int>(2 * k + 1));
// 初始化第一天的状态
for (int j = 1; j < 2 * k; j += 2) {
dp[0][j] = -prices[0]; // 第0天进行第(j+1)/2次买入操作
dp[0][j + 1] = 0; // 第0天进行第(j+1)/2次卖出操作
}
// 从第二天开始遍历每一天
for (int i = 1; i < len; i++) {
// 遍历每种状态
for (int j = 0; j < 2 * k; j += 2) {
// 第i天进行第(j+1)/2次买入操作的最大利润
dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
// 第i天进行第(j+1)/2次卖出操作的最大利润
dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
}
}
// 返回最终最大利润,即完成k次买卖的最大利润
return dp[len - 1][2 * k];
}
};
买卖股票的最佳时机含冷冻期
题目描述
给定一个整数数组prices
,其中第 prices[i]
表示第 i
天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
- 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: prices = [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
示例 2:
输入: prices = [1]
输出: 0
解题思路
-
确定dp数组以及下标的含义
-
dp[i][j]
表示在第i
天结束时,状态j
下的最大利润。其中:dp[i][0]
:第i
天买入股票后的最大利润dp[i][1]
:第i
天不持有股票且不是冷冻期的最大利润dp[i][2]
:第i
天卖出股票后的最大利润dp[i][3]
:第i
天处于冷冻期的最大利润
-
-
确定递推公式
-
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]))
-
第
i
天买入股票的最大利润,可以从三种情况转移而来:- 保持前一天的买入状态(
dp[i - 1][0]
) - 从冷冻期后买入(
dp[i - 1][3] - prices[i]
) - 从不持有股票的状态买入(
dp[i - 1][1] - prices[i]
)
- 保持前一天的买入状态(
-
-
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3])
-
第
i
天不持有股票且不是冷冻期的最大利润,可以从两种情况转移而来:- 保持前一天的不持有状态(
dp[i - 1][1]
) - 从冷冻期后转移(
dp[i - 1][3]
)
- 保持前一天的不持有状态(
-
-
dp[i][2] = dp[i - 1][0] + prices[i]
- 第
i
天卖出股票的最大利润,只能从买入状态转移而来(dp[i - 1][0] + prices[i]
)
- 第
-
dp[i][3] = dp[i - 1][2]
- 第
i
天处于冷冻期的最大利润,只能从前一天的卖出状态转移而来(dp[i - 1][2]
)
- 第
-
-
dp数组初始化
dp[0][0] = -prices[0]
:第一天买入股票dp[0][1]
、dp[0][2]
、dp[0][3]
初始化为0,因为第一天不可能有其他状态
-
确定遍历顺序
- 从左到右遍历价格数组,对于每一天,按照状态
0
到3
的顺序更新状态。
- 从左到右遍历价格数组,对于每一天,按照状态
-
举例推导dp数组
-
输入示例:
[1,2,3,0,2]
,手动推举dp数组状态图如下:
-
代码实现
测试地址:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-with-cooldown/
class Solution {
public:
int maxProfit(vector<int> &prices) {
int len = prices.size();
if (len == 0)
return 0; // 如果没有价格数据,返回利润为0
// 创建一个二维dp数组,其中dp[i][j]表示第i天状态j下的最大利润
vector<vector<int>> dp(len, vector<int>(4, 0));
// 初始化第一天的状态
dp[0][0] = -prices[0]; // 第一天买入股票
// 从第二天开始遍历每一天
for (int i = 1; i < len; i++) {
// 状态0:买入股票
dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]));
// 状态1:保持不持有股票的状态(可能是冷冻期后或之前就没有持有)
dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
// 状态2:卖出股票
dp[i][2] = dp[i - 1][0] + prices[i];
// 状态3:冷冻期(卖出股票后的第二天)
dp[i][3] = dp[i - 1][2];
}
// 返回最后一天的最大利润,考虑所有可能的状态
return max(dp[len - 1][1], max(dp[len - 1][2], dp[len - 1][3]));
}
};
买卖股票的最佳时机含手续费
题目描述
给定一个整数数组 prices
,其中 prices[i]
表示第 i
天的股票价格 ;整数 fee
代表了交易股票的手续费用。
你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
返回获得利润的最大值。
注意: 这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。
示例 1:
输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8
示例 2:
输入:prices = [1,3,7,5,10,3], fee = 3
输出:6
解题思路
本题和 买卖股票的最佳时机 II 的思路大体上也是一样的,唯一的区别就是在考虑股票卖出的时候需要扣去上对应的手续费用即可。
代码实现
测试地址:https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-with-transaction-fee/description/
class Solution {
public:
int maxProfit(vector<int> &prices, int fee) {
int len = prices.size();
if (len == 0)
return 0; // 如果没有价格数据,直接返回利润为0
// 创建一个二维dp数组,其中dp[i][0]表示第i天持有股票的最大利润,dp[i][1]表示第i天不持有股票的最大利润
vector<vector<int>> dp(len, vector<int>(2));
// 初始化第一天的状态
dp[0][0] = -prices[0]; // 第一天买入股票的最大利润
dp[0][1] = 0; // 第一天不持有股票的最大利润
// 遍历每一天,更新dp数组
for (int i = 1; i < len; i++) {
// 更新第i天持有股票的最大利润
dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
// 可以选择保持前一天持有的状态,或者从不持有状态买入股票
// 更新第i天不持有股票的最大利润
dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
// 可以选择保持前一天不持有的状态,或者卖出股票(考虑手续费)
}
// 返回最后一天不持有股票的最大利润,这将是整个交易周期的最大利润
return dp[len - 1][1];
}
};