PAT 1003. Emergency Dijkstra变形+求相等最短路的数量+特殊权重

题意:

一个无向图,除了每条路的长度外,每个城市都有个“救援队数量”。

求出相同长度的最短路有多少条。

并求出在这些最短路中, 救援队数量最大的总和。


思路:

用dijkstra,进行一些变形,有些点必须要注意:

(1)最短路条数

当在松弛操作中 “更新”了 长度时,  其j的最短路条数等于 select最短路条数 。

而当长度相等时,注意,j的最短路长度等于  j的最短路条数 加上 select的最短路条数,而不是+1! 因为select那边传递过来的可能不止1条最短路。


(2)救援队数量

每次判断更新就好,这个简单












#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<stack>
#include<vector>
#include<queue>
#include<string>
#include<map>
using namespace std;
#define INF 99999999
#define M 700
int dis[M][M],cost[M][M];
int d[M],c[M],vis[M];
int cityr[M],passr[M],passn[M],city[M];

void disdj(int n,int s,int e)
{
	int i,j,select,dmin,rmax;
	int pn;
	memset(vis,0,sizeof(vis));
	for(i = 0;i < n; i++)
	{
		d[i] = INF;
	}
	d[s] = 0;
	passn[s] = 1;
	passr[s] = city[s];
	for(i = 0;i < n;i++)
	{
		select = -1;
		dmin = INF;
		for(j = 0;j < n;j++)
		{
			if(vis[j])
				continue;
			if(d[j] < dmin )
			{
				dmin = d[j];
				select = j;
			}
		}
		if(select == -1 || select == e)
			break;
		vis[select] = 1; 
		for(j = 0;j < n; j++)
		{
			if(vis[j])
				continue;
			if(d[select] + dis[select][j] < d[j])
			{
				d[j] = d[select] + dis[select][j];
				passn[j] = passn[select];
				passr[j] = passr[select] + city[j];
			}
			else if(d[select] + dis[select][j] == d[j] )
			{
				passn[j] += passn[select] ;
				if(passr[j] < passr[select] + city[j])
				{
					passr[j] = passr[select] + city[j];
				}
			}
		}
	}
	printf("%d %d\n",passn[e],passr[e]);
}


int main(){
	int n,m,s,e;
	scanf("%d%d%d%d",&n,&m,&s,&e);
	int i,j;
	for(i=0;i<n;i++)
		for(j=0;j<n;j++)
		{
			if(i==j)
				dis[i][j]=0;
			else
				dis[i][j]=INF;
		}


	for(i = 0;i<n;i++)
	{
		scanf("%d",&city[i]);
	}
	
	int re,rs,rl;
	for(i=0;i<m;i++)
	{
		scanf("%d%d%d",&rs,&re,&rl);
		dis[rs][re]=dis[re][rs]=rl;
	}
	disdj(n,s,e);	
	return 0;
}






Dijkstra算法是一种用于解决带权重图中的单源最短路径问题的算法,其中权重可以是负数,但不能存在负权重的环。该算法在使用中需要构建一个最短路径树,同时记录每个顶点到源节点的最短距离。 以下是Dijkstra算法的具体步骤: 1. 创建一个空的最短路径树,并将源节点添加进去。同时初始化每个节点的距离值为无穷大,源节点距离为0。 2. 遍历与源节点相连的所有节点,更新这些节点的距离值为与源节点相连边的权重值,并将这些节点添加到最短路径树中。 3. 从未加入最短路径树的节点中选择距离值最小的节点,并将其加入到最短路径树中。 4. 更新新加入节点相连的所有节点的距离值,如果更新后的距离值比原来的小,则更新它们的距离值。 5. 重复执行步骤3和步骤4,直到所有节点都加入到最短路径树中,或者找到了目标节点。 以下是Matlab代码实现Dijkstra算法,其中graph表示输入的邻接矩阵,start_node表示起始节点编号,end_node表示目标节点编号: ``` function [dist,path] = dijkstra(graph, start_node, end_node) % 初始化dist和path num_nodes = size(graph, 1); dist = inf(num_nodes, 1); path = zeros(num_nodes, 1); visited = zeros(num_nodes, 1); dist(start_node) = 0; path(start_node) = -1; % 迭代计算最短路径 for i=1:num_nodes % 选择未访问节点中距离最小的节点 min_dist = inf; min_index = -1; for j=1:num_nodes if ~visited(j) && dist(j) < min_dist min_dist = dist(j); min_index = j; end end % 如果找不到可达节点,则退出 if min_index == -1 break; end % 更新dist和path visited(min_index) = 1; for j=1:num_nodes if graph(min_index,j) > 0 && ~visited(j) new_dist = dist(min_index) + graph(min_index,j); if new_dist < dist(j) dist(j) = new_dist; path(j) = min_index; end end end % 如果已经找到目标节点,则退出 if min_index == end_node break; end end % 构建最短路径 if path(end_node) == 0 path = []; else path_nodes = []; current_node = end_node; while current_node ~= -1 path_nodes = [path_nodes; current_node]; current_node = path(current_node); end path = flip(path_nodes)'; end end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值