Spark Structured Stream: 输出模式(append,update,complete)

1.complete:

每一个trigger到来时,就输出整个完整的dataframe

完整的不是说这个时间点的完整的dataframe,而是从开始流到结束的所有的dataframe,效果大概是这样的

这个时window下的,如果非window的话还是一个完整的sink,所以window下容易内存爆炸。。用的时候要注意

2. append

只输出新添加的(原来没有的)Row()(如果是groupby,要有watermark才可以)

每当一个watermark时间结束了,这个临时的结果再回转换成正式的结果并导出。

3.update

只输出那些被修改的Row。

每一次window sliding,就去跟原来的结果比较,有变化就输出

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值