深度学习
文章平均质量分 94
太阳是白的
这个作者很懒,什么都没留下…
展开
-
深度学习-LSTM
神经网络是一种模拟人类神经系统的计算模型,它由大量简单的神经元单元组成,通过它们之间的连接和传递信息来模拟人脑的学习和推理过程。神经网络起源于上世纪40年代,当时Warren McCulloch和Walter Pitts提出了一种可模拟生物神经元的数学模型,这是第一个神经元模型。20世纪50年代,Frank Rosenblatt发明了一种称为感知机(Perceptron)的神经网络,可以用来解决二元分类问题。然而,感知机存在一个明显的缺陷:它只能处理线性可分的问题。原创 2023-02-23 15:52:49 · 1711 阅读 · 1 评论 -
深度学习-RNN
RNN(Recurrent Neural Network,循环神经网络)是一类能够处理序列数据的神经网络,它在处理时考虑了之前的状态,因此能够对序列数据中的每个元素进行建模和预测。RNN的应用非常广泛,特别是在自然语言处理和时间序列分析方面。以下是RNN在各个领域的应用:自然语言处理(NLP)文本分类:将文本归类到不同的类别中,如情感分析、垃圾邮件过滤、新闻分类等。机器翻译:将一种语言的文本翻译成另一种语言的文本。语音识别:将人类语音转化为文本。原创 2023-02-23 09:10:52 · 548 阅读 · 0 评论 -
深度学习-Word2Vec
Word2Vec是一种用于将自然语言文本中的单词转换为向量表示的技术,它被广泛应用于自然语言处理和深度学习领域。本文将介绍Word2Vec的基本原理、应用场景和使用方法。原创 2023-02-22 14:06:02 · 553 阅读 · 0 评论