[各种面试题] 等长链表单扫描求和

等长链表单扫描求和

两个单链表(singly linked list),每一个节点里面一个0-9的数字, 输入就相当于两个大数了。然后返回这两个数的和(一个新list)。这两个输入的list 长度相等。 要求是:

  1. 不用递归。
  2. 要求算法在最好的情况下,只遍历两个list一次, 最差的情况下两遍。
下面这个方法也只是看上去很美,其实也不是遍历了一遍,一前一后两个指针不也遍历了两遍吗。所以我还是倾向于生成结果链表,再逆置然后处理进位再逆置。

既然只能遍历两个输入链表一次,那我们就从高位加起呗。在这种限制条件下, 这是唯一的出路。然后呢?进位咋整?先加高位,再加低位, 低位产生的进位怎么加到高位去?我们可没有前向指针哦亲。既然没有前向指针, 我们就让一个临时指针指向高位,当低位相加产生进位时,我们就可以操作高位了。 让我们看看图示:

输入链表1 1 2 3  
输入链表2 1 2 8  
输出链表:  2 4  
两个指针:    p q  

当指向输出链表当前结点的指针q发现3+8=11,产生进位,指向高位的p就将结点值加1。 注意,两个0-9的数相加,要么不进位,要么进位为1,只有两种情况。因此, 我们不用考虑进位是其它数,这一点很重要,后面会看到的。

这样就OK了吗?当然不是,如果你遇上连续进位,怎么破?请看下面的情况:

输入链表1 1 2 3 4 5  
输入链表2 1 7 6 5 9

显然,指向高位的指针p总是紧跟着指向当前结点的指针q是不行的, 这样当遇上连续进位时,比p更高位的位也需要改变。既然p不能紧跟着q, 我们就不让它们紧挨着,给它们产生点距离。考虑一下,什么情况下会产生连续进位? 9! 嗯,遇上9的时候。它要连续进位到哪一位?不为9的那一位。因此,指针p 要停留在和不为9的那一位上,看图示:

输入链表1 1 2 3 4 5  
输入链表2 1 7 6 5 9  
输出链表:  2 9 9 9  
两个指针:  p       q  

这回当q发现,需要进位了,只需要把p所指结点加1,然后把p,q间的结点都置0即可。 为什么都置0了呢,因为进位只可能是1,9+1=10,留在该位的自然是0了。

分析完毕,这种方法在任何时候都只需要遍历输入链表一次,空间复杂度O(1)。

#include<iostream>
#include<vector>
#include<string>
using namespace std;

struct ListNode
{
	int val;
	ListNode* next;
	ListNode(int v):val(v),next(NULL){}
};

ListNode* addTwo(ListNode* l1,ListNode* l2)
{
	ListNode guard(-1);
	ListNode* pNine=NULL,*tail=&guard;
	while(l1&&l2)
	{
		ListNode* tmp=new ListNode(l1->val+l2->val);
		tail->next=tmp;
		tail=tail->next;
		if(tmp->val>=10)
		{
			if(pNine==NULL)
			{
				ListNode* head=new ListNode(0);
				head->next=guard.next;
				guard.next=head;
				pNine=head;
			}
			pNine->val++;
			pNine=pNine->next;
			while(pNine!=tmp)
			{
				pNine->val=0;
				pNine=pNine->next;
			}
			tmp->val=0;
			pNine=tmp;
		}
		else if(tmp->val<9)
		{
			pNine=tmp;
		}
		l1=l1->next,l2=l2->next;
	}
	return guard.next;
}
ListNode* create(int n)
{
	ListNode head(-1);
	ListNode* tail=&head;
	while(n--)
	{
		tail->next=new ListNode(0);
		cin>>tail->next->val;
		tail=tail->next;
	}
	return head.next;
}
int main()
{
	while(1)
	{
		int n;
		cin>>n;
		ListNode* l1=create(n);
		ListNode* l2=create(n);
		ListNode* res=addTwo(l1,l2);
		cout<<endl;
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值