复健第一周
题目:当L11,L12,L13...Ln条件满足时A1条件满足,获得a1分,满足Lx条件需要消耗lx分。同时,每个Lx1,Lx2,Lx3条件还有前置条件Q1,Q2,Q3....
最小割的问题主要是建边。最后将割除来的S部分为未完成的条件,T部分为完成的条件
0.类似与先前条件满足才能满足之后条件的,在最小割中可以将所有条件与结果建一条INF的边,体现在dinic搜索中就是满足小的条件则大的结果无条件完成。
1.Ax条件满足获得ax分,则不满足Ax条件扣ax分,所以需要用ax的代价把这条边切掉,那Ax就可以与T建一条v=ax的边。
2.前置条件:可以串在一起与T建边,其中离T越远的边表示达到这个条件所需要付出的代价的总和,最终条件可以与S建一条INF边,代表无论如何这之上的条件都完不成
#include <iostream>
using namespace std;
#include <string>
#include <string.h>
#include <vector>
#include <math.h>
#include <algorithm>
#include <cstdlib>
#include<queue>
#define double long double
#define MOD (int) (1e9 + 7)
#define MAXN 105
#define INF 0x3fffffff
int N, M, G[MAXN][MAXN], dis[MAXN * MAXN];
int idx, head[MAXN * MAXN];
const int T = MAXN * MAXN - 1, S = MAXN * MAXN - 2;
struct Edge
{
int v, cap, next;
}e[MAXN * MAXN * 4];
inline void init()
{
idx = -1;
memset(head, -1, sizeof(head));
}
inline void insert(int a, int b, int c)
{
++idx;
e[idx].v = b, e[idx].cap = c, e[idx].next = head[a], head[a] = idx;
++idx;
e[idx].v = a, e[idx].cap = 0, e[idx].next = head[b], head[b] = idx;
}
bool bfs()
{
int pos;
queue<int>q;
memset(dis, -1, sizeof(dis));
dis[S] = 0;
q.push(S);
while (!q.empty()) {
pos = q.front();
q.pop();
for (int i = head[pos]; i != -1; i = e[i].next) {
if (dis[e[i].v] == -1 && e[i].cap > 0) {
dis[e[i].v] = dis[pos] + 1;
//cout << e[i].v << ' '<< dis[e[i].v] << endl;
q.push(e[i].v);
}
}
}
return dis[T] != -1;
}
int dfs(int u, int flow)
{
if (u == T) {
return flow;
}
int tf = 0, sf;
for (int i = head[u]; i != -1; i = e[i].next) {
if (dis[u] + 1 == dis[e[i].v] && e[i].cap > 0 && (sf = dfs(e[i].v, min(flow - tf, e[i].cap)))) {
e[i].cap -= sf, e[i ^ 1].cap += sf;
tf += sf;
if (tf == flow) {
return flow;
}
}
}
if (!tf) {
dis[u] = -1;
}
//cout << tf << endl;
return tf;
}
int dinic()
{
int ans = 0, r;
while (bfs()) {
ans += dfs(S, INF);
}
return ans;
}
int C[MAXN][8], cost[MAXN], A[MAXN], Acost[MAXN];
int L[MAXN][MAXN];
int main()
{
int ca = 0, i, j;
cin >> N >> M;
init();
int num = 0, res=0;
for (i = 1; i <= N; i++)
{
cin >> cost[i];
for (j = 1; j<=6; j++)
C[i][j] = ++num;
}
for (i = 1; i <= M; i++)
{
cin >> Acost[i];
A[i] = ++num;
insert(A[i], T, Acost[i]);
res += Acost[i];
}
for (i = 1; i <= M; ++i) {
for (j = 1; j <= N; ++j) {
cin >> L[i][j];
}
}
for (i = 1; i <= N; ++i) {
insert(S, C[i][6], INF);
for (j = 5; j ; --j) {
insert(C[i][j+1], C[i][j], cost[i]*(j-1));
}
insert(C[i][1], T, INF);
}
for (i = 1; i <= M; ++i) {
for (j = 1; j <= N; ++j) {
int x = C[j][L[i][j]], y = A[i];
insert(x, y, INF);
}
}
cout << res - dinic() << endl;
return 0;
}