- 博客(3)
- 收藏
- 关注
转载 HMM基本算法
隐马尔科夫模型(Hidden Markov Model,以下简称HMM)作为语音信号的一种统计模型,在语音处理的各个领域中获得了广泛的应用。当然,随着目前深度学习的崛起,尤其是RNN,LSTM等神经网络序列模型的火热,HMM的地位有所下降。但是作为一个经典的模型,学习HMM的模型和对应算法,对我们解决问题建模的能力提高以及算法思路的拓展还是很好的。本篇将介绍HMM应用到语音处理中经常会面...
2019-08-10 17:55:00 699
转载 基于DNN-HMM的语音识别技术
基于DNN-HMM的语音识别声学模型结构如下图所示,与传统的基于GMM-HMM的声学模型相比,唯一不同点在于用DNN替换了GMM来对输入语音信号的观察概率进行建模。DNN与GMM相比具有如下优点:DNN不需要对声学特征所服从的分布进行假设;DNN的输入可以采用连续的拼接帧,因而可以更好地利用上下文的信息;DNN的训练过程可以采用随机优化算法来实现,而不是采用传统的批优化算法,因此...
2019-08-10 17:52:00 2554
转载 常见算法面试之样本不均衡的解决办法、交叉熵以及HMM、MEMM vs CRF
---恢复内容开始---1、样本类别不均衡的解决办法把数据进行采用的过程中通过相似性同时生成并插样“少数类别数据”,叫做SMOTE算法对数据先进行聚类,再将大的簇进行随机欠采样或者小的簇进行数据生成把监督学习变成无监督学习,舍弃掉标签把问题转化为一个无监督问题,如异常检测先对多数类别进行随机的欠采样,并结合boosting算法进行集成学习1.1、简单...
2019-07-16 14:52:00 963
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人