07 数列的定义 1.3 倍速
一、数列极限的定义
二、收敛数列的两个性质
定理1 数列极限的唯一性
若一个数列{Un}它的极限存在、则它的极限值是唯一的 (反证法)
00:09:00
例如:证明这个数列是发散的{Un}={(1)^n * n / (n+1)}
00:31:26
有界数列
对于数列{Un} ,如果存在一个整数M > 0 ,使得一切Un 都有|Un|<= M,则称{Un}有界,如果数列
定理2
如果数列{Un}收敛, 则{Un}一定是有界的。
00:35:01
证明:
终于看明白收敛的数列为什么他妈有界了
习题 2-1 4,5,6,8
2 函数的极限
讨论x为连续自变量时,函数y=f(x) 的极限。
情况 1
x-> x0
情况 2
自变量x 的绝对值 |x| , 无线增大, 记为 x -> ∞,对应的函数值f(x) 的变化趋势
一, 自变量 x 趋向于定值x0 时, f(x)的极限
问题:当x 趋近x0 时, 对应的函数值f(x) 是否是无限的接近常数A
一、数列极限的定义
二、收敛数列的两个性质
定理1 数列极限的唯一性
若一个数列{Un}它的极限存在、则它的极限值是唯一的 (反证法)
00:09:00
例如:证明这个数列是发散的{Un}={(1)^n * n / (n+1)}
00:31:26
有界数列
对于数列{Un} ,如果存在一个整数M > 0 ,使得一切Un 都有|Un|<= M,则称{Un}有界,如果数列
定理2
如果数列{Un}收敛, 则{Un}一定是有界的。
00:35:01
证明:
终于看明白收敛的数列为什么他妈有界了
习题 2-1 4,5,6,8
2 函数的极限
讨论x为连续自变量时,函数y=f(x) 的极限。
情况 1
x-> x0
情况 2
自变量x 的绝对值 |x| , 无线增大, 记为 x -> ∞,对应的函数值f(x) 的变化趋势
一, 自变量 x 趋向于定值x0 时, f(x)的极限
问题:当x 趋近x0 时, 对应的函数值f(x) 是否是无限的接近常数A