stats.norm.sf(x) 的功能

该博客通过Python的scipy库验证了标准正态分布中大于特定数值的概率计算。内容涉及1个、2个和3个标准差内的概率,并在区间估计中使用95%置信水平与1.96标准差的对应关系进行举例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在统计学中的标准正态分布中会有很多用到计算大于某个数值的概率, stats.norm.sf(x)函数就是计算这个概率的。

我们都知道标准正态分布中, 一个标准差的概率大约是68.2%; 两个标准差的概率大约是95.4%;  三个标准差的概率大约是99.7%。

下面让我们来使用这个函数来验证一下

from scipy import stats

# 正态分布中大于 0 的概率
stats.norm.sf(0)

结果是:0.5

我们来计算一个标准差范围内的概率

# 大于一个标准差的概率
print(stats.norm.sf(1))

# 大于一个标准差的概率 和小于一个标准差的概率
print(2 * stats.norm.sf(1))

# 正负一个标准差之间的概率
print(1 - 2 * stats.norm.sf(1))

答案是:

0.15865525393145707
0.31731050786291415
0.6826894921370859

同理, 我们可以得到正负两个, 三个标准差范围的概率分别是

# 同理可得正负两个标准差之间的概率
print(1 - 2 * stats.norm.sf(2))
# 同理可得正负三个标准差之间的概率
print(1 - 2 * stats.norm.sf(3))

结果:

0.9544997361036416
0.9973002039367398

另外在区间估计的时候我们总是使用95%和1.96标准差, 我们看看是不是对应的呢

print(1 - 2 * stats.norm.sf(1.96))

结果就是:

0.9500042097035591

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值