洛谷 P1435 回文字串

给了一个串,求最少填几个字母可以组成回文串,我们发现找到最中间的数后,其余只要不对称的都需要补(左边的补到右边,右边的补到左边所以=len-中间相同的子串),所以不如去求中间的子串,一减就可以了。

string:len=s1.size();

char:len=strlen();

从一开始录入:scanf("%s",s1+1);

从下标一开始计数:int len=strlen(s1+1);

既然是回文串,左右相同,就可以直接求它倒过来和它的最大公共子序列。

但当s1[i]==s2[j]时,是可以直接继承然后+1的;

 Adb3bdmzA

 Azmdb3bdA

最边上的A也是不用补的,

最长公共子序列如下:

#include <bits/stdc++.h>
using namespace std;

int n,a[1000008],b[10000008],f[10008][10008];
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    for(int i=1;i<=n;i++)
        scanf("%d",&b[i]);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++){
            if(a[i-1]==b[j-1])    f[i][j]=max(f[i][j],f[i-1][j-1]+1);
            else    f[i][j]=max(f[i-1][j],f[i][j-1]);    
        }
    int ans=f[n][n];
    printf("%d",ans);
    return 0;
}

而本题的代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

char s1[1009],s2[1009];
int f[1009][1009],maxn;

int main(){
    scanf("%s",s1+1);
    int len=strlen(s1+1);
    for(int i=1;i<=len;i++)
        s2[len-i+1]=s1[i];
    for(int i=1;i<=len;i++){
        for(int j=1;j<=len;j++){
            if(s1[i]==s2[j])
                f[i][j]=max(f[i][j],f[i-1][j-1]+1);
            else 
                f[i][j]=max(f[i-1][j],f[i][j-1]);
            //maxn=max(maxn,f[i][j]);    
        }
        
    }
    printf("%d",len-f[len][len]);
    
    return 0;
} 

打个黄题打的我快不想学了,状态转移方程还是不会列。

转载于:https://www.cnblogs.com/jindui/p/11028560.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值