1. 引言
在全球疫情背景下,口罩识别系统变得尤为重要。通过深度学习技术,我们可以构建一个实时口罩识别系统来检测人们是否佩戴了口罩。本教程将详细介绍如何从零开始构建一个基于YOLO模型的口罩识别系统,并通过Flask构建一个简单的用户界面。该教程适合新手,涵盖数据准备、模型训练、代码实现和UI部署等完整流程。
目录
2. 项目概述
本项目将实现以下功能:
- 使用YOLO模型进行口罩识别。
- 构建一个简单的用户界面,允许用户上传图片,并显示识别结果。
- 提供完整的代码示例和训练数据集。
3. 环境配置
在开始项目之前,我们需要配置环境:
- Python 3.8+
- OpenCV
- PyTorch
- Flask
- YOLOv5/6/7/8预训练模型
首先,安装必要的依赖库:
pip install torch torchvision torchaudio
pip install opencv-python flask
4. 数据集准备
为了训练我们的模型,我们需要一个标注好的口罩识别数据集。你可以使用公开的口罩数据集,或者使用LabelImg等工具自己标注数据集。
数据集结构如下:
dataset/
├── train/
│ ├── images/
│ └── labels/
├── val/
│ ├── images/
│ └── labels/
将标注文件保存为YOLO格式(.txt),每个文件的每一行表示一个目标(类别、中心点坐标和宽高),例如:
0 0.5 0.5 0.2 0.3
5. 模型训练
使用YOLO预训练模型进行口罩识别的训练,以下以YOLOv5为例:
首先,克隆YOLOv5仓库:
git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt
配置数据集路径和训练参数: 创建一个data.yaml
文件,内容如下:
train: /path/to/dataset/train/images
val: /path/to/dataset/val/images
nc: 2
names: ['with_mask', 'without_mask']
然后,开始训练:
python train.py --img 640 --batch 16 --epochs 50 --data data.yaml --weights yolov5s.pt
6. 构建UI界面
使用Flask框架构建一个简单的UI界面,允许用户上传图片并显示识别结果。
app.py:
from flask import Flask, request, render_template
import torch
import cv2
import numpy as np
app = Flask(__name__)
model = torch.hub.load('ultralytics/yolov5', 'custom', path='path/to/best.pt')
@app.route('/', methods=['GET', 'POST'])
def upload_file():
if request.method == 'POST':
file = request.files['file']
if file:
img = cv2.imdecode(np.fromstring(file.read(), np.uint8), cv2.IMREAD_COLOR)
results = model(img)
results.render()
return render_template('result.html', img=results.imgs[0])
return render_template('index.html')
if __name__ == '__main__':
app.run(debug=True)
templates/index.html:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>口罩识别系统</title>
</head>
<body>
<h1>口罩识别系统</h1>
<form method="post" enctype="multipart/form-data">
<input type="file" name="file">
<input type="submit" value="上传">
</form>
</body>
</html>
templates/result.html:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>识别结果</title>
</head>
<body>
<h1>识别结果</h1>
<img src="{{ img }}" alt="识别结果">
<a href="/">返回</a>
</body>
</html>
7. 部署与测试
确保所有代码无误后,可以运行Flask应用并测试上传图片进行识别:
python app.py
在浏览器中打开http://127.0.0.1:5000/
,上传图片即可看到识别结果。
8. 结论与声明
通过本项目,展示了如何使用YOLO模型实现口罩识别,并通过简单的UI界面进行交互。
本博客只是简单的项目实现思路,如有想要(UI界面+YOLOv8/v7/v6/v5代码+训练数据集)的可以联系作者,感谢你的阅读。