1106: xor的难题之二
时间限制: 2 Sec 内存限制: 128 MB提交: 8 解决: 3
题目描述
上次Alex学长的问题xor难题很简单吧,现在hkhv学长有个问题想问你们。
他现在有n个数,q个操作。操作分两种,操作一是查询下标L到下标R之间的xor值是多少,操作二是将第i个数变为x。
输入
输入T(T <= 100)组数据,每组数据第一行输入n(1 <=n <= 10^4)和q(1 <=q <= 10^4),接下来一行输入n个数字ai(0 <=ai <= 10^9),接下来是q个操作:"1 L R"表示询问L到R之间的xor值(1 <=L <= R <= n),"2 i x"表示将第i个数变为x(1 <=x <= 10^9)。
输出
对于每一组询问,输出对应的答案(输出格式见样例)。
样例输入
1
3 3
1 2 3
1 1 3
2 2 0
1 1 3
样例输出
Case 1:
0
2
本地搞了半天终于搞对了,单点若需要二次修改的话需要另外一个数组D[i]来记录原本正常非树状结构下的值,在修改的时候跟add结合处理一下。
代码:
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
typedef long long LL;
#define INF 0x3f3f3f3f
#define MM(x) memset(x,0,sizeof(x))
const int N=10010;
int c[N],d[N];
inline void add(int k,int val,int n)
{
while (k<=n)
{
c[k]^=val;
k+=(k&-k);
}
}
inline int getsum(int k)
{
int sum=0;
while (k)
{
sum^=c[k];
k-=(k&-k);
}
return sum;
}
int main(void)
{
int tcase,i,j,ops,x,val,q,n,l,r;
scanf("%d",&tcase);
for (int w=1; w<=tcase; w++)
{
MM(c);
MM(d);
scanf("%d%d",&n,&q);
for (i=1; i<=n; i++)
{
scanf("%d",&d[i]);
add(i,d[i],n);
}
printf("Case %d:\n",w);
for (i=1; i<=q; i++)
{
scanf("%d",&ops);
if(ops==1)
{
scanf("%d%d",&l,&r);
printf("%d\n",getsum(r)^getsum(l-1));
}
else if(ops==2)
{
scanf("%d%d",&x,&val);
add(x, val^d[x],n);
d[x]=val;
}
}
}
return 0;
}