HDU——5667Sequence(矩阵快速幂+费马小定理应用)

80 篇文章 1 订阅
7 篇文章 0 订阅

Sequence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1424    Accepted Submission(s): 469


Problem Description
     Holion August will eat every thing he has found.

     Now there are many foods,but he does not want to eat all of them at once,so he find a sequence.

fn=1,ab,abfcn1fn2,n=1n=2otherwise

     He gives you 5 numbers n,a,b,c,p,and he will eat  fn  foods.But there are only p foods,so you should tell him  fn  mod p.
 

Input
     The first line has a number,T,means testcase.

     Each testcase has 5 numbers,including n,a,b,c,p in a line.

    1T10,1n1018,1a,b,c109 , p  is a prime number,and  p109+7 .
 

Output
     Output one number for each case,which is  fn  mod p.
 

Sample Input
  
  
1 5 3 3 3 233
 

Sample Output
  
  
190
 

网上题解解释起来不是非常清楚,我想了一节课终于明白了为什么要对p-1取模了。

首先理解费马小定理:若a与p互质且b为素数,则a^(p-1)%p恒为1。但是这跟题目有啥关系?所以要先推题目的递推式

先两边取loga对数(刚开始取log10,发现化不出来)然后就可以得到

因此另。即。然后求Kn。(右上角的1与右下边的b互换不影响结果)

然后此题数据有点水,若a为p的倍数(a=x*p),此时原式可以为((x*p)^Kn)%p=0,因此要特判为0,不然结果会是1,由于后台数据并没有考虑这个情况,因此部分人没考虑这个情况直接模p-1也是可以过的,就是这个地方让我纠结了很久:虽然p为素数与绝大部分数都互质,但万一a是p的倍数怎么办?至此得出答案。

代码:

#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<cstdio>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define MM(x) memset(x,0,sizeof(x))
using namespace std;
typedef long long LL;
LL n,a,b,c,p;
struct mat
{
	LL pos[3][3];
	mat (){MM(pos);}
};
inline mat operator*(const mat &a,const mat &b)
{
	mat c;
	for (int i=0; i<3; i++)
	{
		for (int j=0; j<3; j++)
		{
			for (int k=0; k<3; k++)
				c.pos[i][j]+=(a.pos[i][k]*b.pos[k][j])%(p-1);
		}
	}
	return c;
}
inline mat operator^(mat a,LL b)
{
	mat r,bas=a;
	for (int i=0; i<3; i++)
		r.pos[i][i]=1;
	while (b!=0)
	{
		if(b&1)
			r=r*bas;
		bas=bas*bas;
		b>>=1;
	}
	return r;
}
inline LL qpow(LL a,LL b)
{
	LL r=1,bas=a;
	while (b!=0)
	{
		if(b&1)
			r=(r*bas)%p;
		bas=(bas*bas)%p;
		b>>=1;
	}
	return r%p;
}
int main(void)
{
	int tcase,i,j;
	scanf("%d",&tcase);
	while (tcase--)
	{
		scanf("%lld%lld%lld%lld%lld",&n,&a,&b,&c,&p);
		if(a%p==0)
			puts("0");
		else if(n==1)
			puts("1");
		else if(n==2)
			printf("%lld\n",qpow(a,b));
		else
		{
			mat t,one;
			t.pos[0][0]=c;t.pos[0][1]=1;t.pos[0][2]=b;
			t.pos[1][0]=1;
										t.pos[2][2]=1;
			one.pos[0][0]=b;one.pos[1][0]=0;one.pos[2][0]=1;
			t=t^(n-2);
			one=t*one;
			printf("%lld\n",qpow(a,one.pos[0][0]));
		}		
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值