一:数据切分
就是通过某种条件,将我们之前存储在一台数据库上的数据,分散到多台数据库中,从而达到降低单体数据库负载的效果。
数据切分,根据其切分的规则,大致分为两类:垂直切分和水平切分。
二:垂直切分
将不同表放在不同库中
优点:
1、拆分后业务清晰,拆分规则明确
2、系统之间容易扩展和整合
3、数据维护简单
缺点:
1、部分业务表无法join,只能通过接口调用,提升了系统的复杂度
2、跨库事务难以处理
3、垂直切分后,某些业务数据过于庞大,仍然存在单体性能瓶颈
三:水平切分
将一个表中的数据,根据某种规则拆分到不同数据库中。
几种水平拆分的典型分片规则:
1、用户id求模
2、根据日期拆分数据
3、按照其他字段求模
优点:
1、解决了单库大数据、高并发的性能瓶颈
2、拆分规则封装好,对应用端几乎透明,开发人员无需关心拆分细节
3、提高了系统的稳定性和负载能力
缺点:
拆分规则很难抽象
分片事务一致性难以解决
二次扩展时,数据迁移、维护难度大。比如:开始我们按照用户id对2求模,但虽业务增长,2台数据库难以支撑,还要继续拆分成4台数据库,就需要做数据迁移。
四:针对多数据源管理,主要两种方式:
1、客户端模式
在每个应用模块内,配置自己需要的数据源,直接访问数据库,在各模块内完成数据的整合。成熟应用:MyCat
2、中间代理模式
中间代理统一管理所有数据源,数据库层对开发人员完全透明,开发人员无需关注拆分的细节。成熟应用:sharding-jdbc