[LeetCode 每日一题 304]

304. 二维区域和检索 - 矩阵不可变

给定一个二维矩阵,计算其子矩形范围内元素的总和,该子矩阵的左上角为 (row1, col1) ,右下角为 (row2, col2)。

在这里插入图片描述
上图子矩阵左上角 (row1, col1) = (2, 1) ,右下角(row2, col2) = (4, 3),该子矩形内元素的总和为 8。
示例:

给定 matrix = [
  [3, 0, 1, 4, 2],
  [5, 6, 3, 2, 1],
  [1, 2, 0, 1, 5],
  [4, 1, 0, 1, 7],
  [1, 0, 3, 0, 5]
]

sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/range-sum-query-2d-immutable
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析:使用二维前缀和处理
首先是二维的前缀和数组的初始化
在这里插入图片描述
对于要计算的黄色框的前缀和sum[1][2],等于绿色框的sum[0][2]+紫色框的sum[1][1]-重复加上的粉色框sum[0][1]+本身的数值matrix[1][2];
接下来就是要计算的目标值:
在这里插入图片描述
对于要计算的蓝色框,等于黑色框的sum[row2][col2]-橙色框的sum[row1-1][col2]-紫色框的sum[row2][col1-1]+重复减去的绿色框sum[row-1][col1-1];
代码

class NumMatrix {
public:
int sum[1000][1000]={0};
    NumMatrix(vector<vector<int>>& matrix) {
for(int i=0;i<matrix.size();i++)
for(int j=0;j<matrix[0].size();j++){
    sum[i+1][j+1]=sum[i][j+1]+sum[i+1][j]+matrix[i][j]-sum[i][j];
    //初始化前缀和数组,+1是可以减少边界的特判
}
    }
    
    int sumRegion(int row1, int col1, int row2, int col2) {
return sum[row2+1][col2+1]-sum[row1][col2+1]-sum[row2+1][col1]+sum[row1][col1];
//套公式计算目标值
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值