深度学习
theFlyer
这个作者很懒,什么都没留下…
展开
-
开山-深度学习(1)RNN循环神经网络
欢迎来到theFlyer的博客—希望你有不一样的感悟前言:由于需要讲课,做了关于RNN的ppt以及两个程序分别是用RNN来预测和分类。一. RNN提出原因在很多实际应用中,数据是相互依赖的。某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。如:处理视频的时候,不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列。 循环神经网络主要用来处理序列数...原创 2018-06-26 00:34:35 · 1321 阅读 · 0 评论 -
深度学习(2)LSTM长短期记忆网络
欢迎来到theFlyer的博客—希望你有不一样的感悟前言:这次内容是LSTM,主要讲解了LSTM的前向传播和一个飞机流量的代码,若无基础建议先看下循环神经网络RNN。目录欢迎来到theFlyer的博客—希望你有不一样的感悟目录一. LSTM提出原因二. LSTM模型1RNN与LSTM2存储长期信息2.1引入simple RNN 2.2如何存储新的信息 2...原创 2018-07-08 14:08:17 · 4643 阅读 · 0 评论 -
深度学习(3)损失函数-交叉熵(CrossEntropy)
欢迎来到theFlyer的博客—希望你有不一样的感悟前言:交叉熵损失函数。一. 损失函数 机器学习算法都或多或少的依赖于对目标函数最大化或者最小化的过程,常常把最小化的函数称为损失函数,它主要用于衡量机器学习模型的预测能力。损失函数可以看出模型的优劣,提供了优化的方向,但是没有任何一种损失函数适用于所有的模型。损失函数的选取依赖于参数的数量、异常值、机器学习算法、梯度下降...原创 2018-07-26 20:20:18 · 17240 阅读 · 4 评论 -
深度学习(4)Dropout/BatchNomalization原理
欢迎来到theFlyer的博客—希望你有不一样的感悟前言:好记性不如烂笔头,不得不承认记忆力严重下降,看了不少遍的东西还是记不住,还是需要在理解和实践。一. Dropout深度学习模型常常使用丢弃法(dropout)来应对过拟合问题。丢弃法有⼀些不同的变体。本节中提到的丢弃法特指倒置丢弃法(inverted dropout)。这是一个单隐藏层的多层感知机。其中,输入个数为4,隐藏单...原创 2018-12-18 23:27:56 · 2267 阅读 · 0 评论