25.1.10 快速排序、归并排序

快速排序

快速排序(英语:Quicksort),又称划分交换排序(partition-exchange sort),通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此将整个数据变成有序序列。

步骤为:

  1. 从数列中挑出一个元素,称为"基准"(pivot)
  2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区结束之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
  3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了。虽然一直递归下去,但是这个算法总会结束,因为在每次的迭代(iteration)中,它至少会把一个元素摆到它最后的位置去。

代码实现

def quick_sort(alist, first, last): # 设置动态的起始位置和终止位置,因为在后续递归时起始不总为0
    """快速排序"""
    if first >= last:
        return
    mid_value = alist[first]  # 设置中间值
    low = first
    high = last
    while low < high:
        # 1. 让high左移
        while low < high and alist[high] >= mid_value: # 把与基准值相等的情况统一放到一边
            high -= 1
        alist[low] = alist[high] # 退出循环时,也就是low>high或者alist[high] < mid_value时,将high指针所指的数据和low所指的数据进行位置交换
        # 2. 让low右移
        while low < high and alist[low] < mid_value:
            low += 1
        alist[high] = alist[low]
    alist[low] = mid_value

    # 对low左边的列表进行排序
    quick_sort(alist, first, low-1)
    # 对low右边的列表进行排序
    quick_sort(alist, low+1, last)


if __name__ == "__main__":
    li = [54,26,93,17,77,31,44,55,20]
    quick_sort(li, 0, len(li)-1)
    print(li)

时间复杂度

最优时间复杂度:O(nlogn)
最坏时间复杂度:O(n^2)
稳定性:不稳定

从一开始快速排序平均需要花费O(nlogn)时间的描述并不明显。但是不难观察到的是分区运算,数组的元素都会在每次循环中走访过一次,使用O(n)的时间。在使用结合(concatenation)的版本中,这项运算也是O(n)。

在最好的情况,每次我们运行一次分区,我们会把一个数列分为两个几近相等的片段。这个意思就是每次递归调用处理一半大小的数列。因此,在到达大小为1的数列前,我们只要作logn次嵌套的调用。这个意思就是调用树的深度是O(logn)。但是在同一层次结构的两个程序调用中,不会处理到原来数列的相同部分;因此,程序调用的每一层次结构总共全部仅需要O(n)的时间(每个调用有某些共同的额外耗费,但是因为在每一层次结构仅仅只有O(n)个调用,这些被归纳在O(n)系数中)。结果是这个算法仅需使用O(nlogn)时间。

归并排序

归并排序是采用分治法的一个非常典型的应用。归并排序的思想就是先递归分解数组,再合并数组。

将数组分解最小之后(即分解至每个列表只有一个元素),然后合并两个有序数组,基本思路是比较两个数组的最前面的数,谁小就先取谁,取了后相应的指针就往后移一位。然后再比较,直至一个数组为空,最后把另一个数组的剩余部分复制过来即可。并且注意:拆时候是怎么拆的,合并的时候也是怎样合并的。

代码实现

def merge_sort(alist):
    """归并排序"""
    n = len(alist)
    if n <= 1:
        return alist
    # 1. 拆分
    mid = n // 2 # 列表中间元素的下标
    left_li = merge_sort(alist[:mid]) # left表示采用归并排序后形成的有序的新的列表
    right_li = merge_sort(alist[mid:])

    #将两个有序的子数列合并成一个新的有序整体
    left_pointer, right_pointer = 0, 0 # 分别在左右两个子序列创建两个指针
    result = [] # 创建一个摆放最终列表的空间
    
    while left_pointer < len(left_li) and right_pointer < len(right_li):
        if left_li[left_pointer] <= right_li[right_pointer]:
            result.append(left_li[left_pointer])
            left_pointer += 1
        else:
            result.append(right_li[right_pointer])
            right_pointer += 1
            
    result += left_li[left_pointer:]
    result += right_li[right_pointer:]
    return result

if __name__ == "__main__":
    li = [54,26,93,17,77,31,44,55,20]
    merge_sort(li)
    sorted_li = merge_sort(li)
    print(li)
    print(sorted_li)

时间复杂度

最优时间复杂度:O(nlogn)
最坏时间复杂度:O(nlogn)
稳定性:稳定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值